Kernel estimation of regression function gradient

被引:0
|
作者
Kroupova, Monika [1 ]
Horova, Ivana [1 ]
Kolacek, Jan [1 ]
机构
[1] Masaryk Univ, Brno, Czech Republic
关键词
Kernel estimation; regression function gradient; multivariate regression; constrained bandwidth matrix; kernel smoothing; mean integrated square error; BANDWIDTH MATRIX SELECTORS; CHOICE;
D O I
10.1080/03610926.2018.1532518
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of this topic, the progress in this area is rather slow. Our aim is to construct a gradient estimator using the idea of local linear estimator for a regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach. The performance of presented methods is illustrated using a simulation study and real data example.
引用
收藏
页码:135 / 151
页数:17
相关论文
共 50 条