Finite-element wavelets on manifolds

被引:8
|
作者
Nguyen, H [1 ]
Stevenson, R [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
finite elements; wavelets; Riesz bases; vanishing moments; boundary integral equations;
D O I
10.1093/imanum/23.1.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct locally supported, continuous wavelets on manifolds Gamma that are given as the closure of a disjoint union of general smooth parametric images of an n-simplex. The wavelets are proven to generate Riesz bases for Sobolev spaces H-s (Gamma) when s is an element of (-1, 3/2), if not limited by the global smoothness of Gamma. These results generalize the findings from Dahmen & Stevenson (1999) SIAM J. Numer. Anal., 37, 319-352, where it was assumed that each parametrization has a constant Jacobian determinant. The wavelets can be arranged to satisfy the cancellation property of, in principle, any order, except for wavelets with supports that extend to different patches, which generally satisfy the cancellation property of only order 1.
引用
收藏
页码:149 / 173
页数:25
相关论文
共 50 条
  • [41] THE FINITE-ELEMENT METHOD FOR MICROSENSORS
    CRARY, SB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (11) : C445 - C445
  • [42] Multiscale finite-element method
    Rank, E.
    Krause, R.
    Computers and Structures, 1997, 64 (1-4): : 139 - 144
  • [43] UNIFIED FINITE-ELEMENT ANALYSIS
    MIKHAILOV, MD
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (10) : 1507 - 1511
  • [44] A SEMILINEAR FINITE-ELEMENT METHOD
    SUN, JC
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1985, 3 (02) : 97 - 114
  • [45] The finite-element method (FEM)
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 116: NUMERICAL FIELD CALCULATION FOR CHARGED PARTICLE OPTICS, 2001, 116 : 193 - 261
  • [46] FINITE-ELEMENT IN ADHESION ANALYSES
    ANDERSON, GP
    DEVRIES, KL
    WILLIAMS, ML
    INTERNATIONAL JOURNAL OF FRACTURE, 1973, 9 (04) : 421 - 436
  • [47] A SIMPLE MEMBRANE FINITE-ELEMENT
    SPILLERS, WR
    SCHLOGEL, M
    PILLA, D
    COMPUTERS & STRUCTURES, 1992, 45 (01) : 181 - 183
  • [48] OPTIMIZATION FOR FINITE-ELEMENT APPLICATIONS
    ALI, H
    MECHANICAL ENGINEERING, 1994, 116 (12) : 68 - 70
  • [49] HYBRID FINITE-ELEMENT METHODS
    FIX, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A659 - A659
  • [50] FINITE-ELEMENT METHOD FOR GRATINGS
    DELORT, T
    MAYSTRE, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (12): : 2592 - 2601