Finite-element wavelets on manifolds

被引:8
|
作者
Nguyen, H [1 ]
Stevenson, R [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
finite elements; wavelets; Riesz bases; vanishing moments; boundary integral equations;
D O I
10.1093/imanum/23.1.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct locally supported, continuous wavelets on manifolds Gamma that are given as the closure of a disjoint union of general smooth parametric images of an n-simplex. The wavelets are proven to generate Riesz bases for Sobolev spaces H-s (Gamma) when s is an element of (-1, 3/2), if not limited by the global smoothness of Gamma. These results generalize the findings from Dahmen & Stevenson (1999) SIAM J. Numer. Anal., 37, 319-352, where it was assumed that each parametrization has a constant Jacobian determinant. The wavelets can be arranged to satisfy the cancellation property of, in principle, any order, except for wavelets with supports that extend to different patches, which generally satisfy the cancellation property of only order 1.
引用
收藏
页码:149 / 173
页数:25
相关论文
共 50 条
  • [31] FINITE-ELEMENT ANALYSIS OF CHIROWAVEGUIDES
    SVEDIN, JAM
    ELECTRONICS LETTERS, 1990, 26 (13) : 928 - 929
  • [32] Finite-element modeling of nanoindentation
    Knapp, JA
    Follstaedt, DM
    Myers, SM
    Barbour, JC
    Friedmann, TA
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (03) : 1460 - 1474
  • [33] FINITE-ELEMENT ANALYSIS OF COMPOSITES
    SCHIERMEIER, J
    ADVANCED MATERIALS & PROCESSES, 1987, 132 (05): : 36 - 43
  • [34] ELASTOPLASTIC FINITE-ELEMENT ANALYSIS
    KALEV, I
    GLUCK, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (05) : 875 - 881
  • [35] MODIFICATIONS OF THE FINITE-ELEMENT METHOD
    KUKISHEV, VL
    SANKIN, YN
    SOVIET APPLIED MECHANICS, 1982, 18 (07): : 602 - 606
  • [36] FINITE-ELEMENT ANALYSIS ON A PC
    FLOWER, J
    KOLAWA, A
    LIANG, T
    WEINGARTEN, V
    IEEE SOFTWARE, 1991, 8 (05) : 50 - 57
  • [37] FINITE-ELEMENT ANALYSIS OF CALENDERING
    KIPARISSIDES, C
    VLACHOPOULOS, J
    POLYMER ENGINEERING AND SCIENCE, 1976, 16 (10): : 712 - 719
  • [38] FINITE-ELEMENT DESIGN IN COLOR
    不详
    AUTOMOTIVE INDUSTRIES, 1978, 158 (07): : 67 - 67
  • [39] ON FINITE-ELEMENT MESH RELIABILITY
    BAUDRON, AM
    TROMPETTE, P
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1986, 5 (05): : 731 - 746
  • [40] SOLVING THE FINITE-ELEMENT PUZZLE
    BUSSLER, ML
    PAULSEN, WC
    MACHINE DESIGN, 1994, 66 (20) : 72 - &