Path Ramsey Number for Random Graphs

被引:37
|
作者
Letzter, Shoham [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
来源
COMBINATORICS PROBABILITY & COMPUTING | 2016年 / 25卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
MONOCHROMATIC CYCLES;
D O I
10.1017/S0963548315000279
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Answering a question raised by Dudek and Pralat, we show that if pn -> infinity, w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length (2/3 + o(1))n. This result is optimal in the sense that 2/3 cannot be replaced by a larger constant. As part of the proof we obtain the following result. Given a graph G on n vertices with at least (1 - epsilon) [GRAPHICS] edges, whenever G is 2-edge-coloured, there is a monochromatic path of length at least (2/3 - 110 root epsilon)n. This is an extension of the classical result by Gerencser and Gyarfas which says that whenever K-n is 2-coloured there is a monochromatic path of length at least 2n/3.
引用
收藏
页码:612 / 622
页数:11
相关论文
共 50 条
  • [31] On an anti-Ramsey threshold for random graphs
    Kohayakawa, Y.
    Konstadinidis, P. B.
    Mota, G. O.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 26 - 41
  • [32] Bipartite Ramsey Numbers of Cycles for Random Graphs
    Meng Liu
    Yusheng Li
    Graphs and Combinatorics, 2021, 37 : 2703 - 2711
  • [33] ON SOME MULTICOLOR RAMSEY PROPERTIES OF RANDOM GRAPHS
    Dudek, Andrzej
    Pralat, Pawel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (03) : 2079 - 2092
  • [34] Anti-Ramsey properties of random graphs
    Bohman, Tom
    Frieze, Alan
    Pikhurko, Oleg
    Smyth, Cliff
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 299 - 312
  • [35] The size-Ramsey number of cubic graphs
    Conlon, David
    Nenadov, Rajko
    Trujic, Milos
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (06) : 2135 - 2150
  • [36] On the Ramsey Number of Sparse 3-Graphs
    Brendan Nagle
    Sayaka Olsen
    Vojtěch Rödl
    Mathias Schacht
    Graphs and Combinatorics, 2008, 24 : 205 - 228
  • [37] ON THE RAMSEY NUMBER OF TREES VERSUS GRAPHS WITH LARGE CLIQUE NUMBER
    GOULD, RJ
    JACOBSON, MS
    JOURNAL OF GRAPH THEORY, 1983, 7 (01) : 71 - 78
  • [38] Ramsey Properties of Random Subgraphs of Pseudo-Random Graphs
    Shen, Jia
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [39] On the cycle-path bipartite Ramsey number
    Joubert, Ernst J.
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2024, 347 (02)
  • [40] Multicolor Ramsey Number of Stars Versus a Path
    Xuejun ZHANG
    Xinmin HOU
    Journal of Mathematical Research with Applications, 2024, 44 (04) : 465 - 469