Anti-Ramsey properties of random graphs

被引:4
|
作者
Bohman, Tom [1 ]
Frieze, Alan [1 ]
Pikhurko, Oleg [1 ]
Smyth, Cliff [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Ramsey theory; Random graphs;
D O I
10.1016/j.jctb.2009.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a coloring of the edge set of a graph G a b-bounded coloring if no color is used more than b times. We say that a subset of the edges of G is rainbow if each edge is of a different color. A graph has property A(b, H) if every b-bounded coloring of its edges has a rainbow copy of H. We estimate the threshold for the random graph G(n,p) to have property A(b, H). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 50 条
  • [1] On an anti-Ramsey threshold for random graphs
    Kohayakawa, Y.
    Konstadinidis, P. B.
    Mota, G. O.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 26 - 41
  • [2] SPARSE ANTI-RAMSEY GRAPHS
    KOHAYAKAWA, Y
    LUCZAK, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 146 - 152
  • [3] Anti-Ramsey numbers of small graphs
    Bialostocki, Arie
    Gilboa, Shoni
    Roditty, Yehuda
    ARS COMBINATORIA, 2015, 123 : 41 - 53
  • [4] Anti-Ramsey numbers of subdivided graphs
    Jiang, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (02) : 361 - 366
  • [5] ANTI-RAMSEY NUMBER OF HANOI GRAPHS
    Gorgol, Izolda
    Lechowska, Anna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 285 - 296
  • [6] ON AN ANTI-RAMSEY PROPERTY OF RAMANUJAN GRAPHS
    HAXELL, PE
    KOHAYAKAWA, Y
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (04) : 417 - 431
  • [7] The anti-Ramsey threshold of complete graphs
    Kohayakawa, Yoshiharu
    Mota, Guilherme Oliveira
    Parczyk, Olaf
    Schnitzer, Jakob
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [8] Local anti-Ramsey numbers of graphs
    Axenovich, M
    Jiang, T
    Tuza, Z
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (5-6): : 495 - 511
  • [9] Anti-Ramsey number of matchings in outerplanar graphs
    Jin, Zemin
    Yu, Rui
    Sun, Yuefang
    DISCRETE APPLIED MATHEMATICS, 2024, 345 : 125 - 135
  • [10] Anti-Ramsey numbers for graphs with independent cycles
    Jin, Zemin
    Li, Xueliang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):