Anti-Ramsey properties of random graphs

被引:4
|
作者
Bohman, Tom [1 ]
Frieze, Alan [1 ]
Pikhurko, Oleg [1 ]
Smyth, Cliff [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Ramsey theory; Random graphs;
D O I
10.1016/j.jctb.2009.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a coloring of the edge set of a graph G a b-bounded coloring if no color is used more than b times. We say that a subset of the edges of G is rainbow if each edge is of a different color. A graph has property A(b, H) if every b-bounded coloring of its edges has a rainbow copy of H. We estimate the threshold for the random graph G(n,p) to have property A(b, H). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 50 条
  • [21] Anti-Ramsey Number of Triangles in Complete Multipartite Graphs
    Zemin Jin
    Kangyun Zhong
    Yuefang Sun
    Graphs and Combinatorics, 2021, 37 : 1025 - 1044
  • [22] Anti-Ramsey Numbers of Graphs with Small Connected Components
    Shoni Gilboa
    Yehuda Roditty
    Graphs and Combinatorics, 2016, 32 : 649 - 662
  • [23] Anti-Ramsey numbers for small complete bipartite graphs
    Axenovich, M
    Jiang, T
    ARS COMBINATORIA, 2004, 73 : 311 - 318
  • [24] An anti-Ramsey theorem
    Montellano-Ballesteros, JJ
    Neumann-Lara, V
    COMBINATORICA, 2002, 22 (03) : 445 - 449
  • [25] Anti-Ramsey Numbers in Complete k-Partite Graphs
    Ding, Jili
    Bian, Hong
    Yu, Haizheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [26] AN ANTI-RAMSEY THEOREM
    BABAI, L
    GRAPHS AND COMBINATORICS, 1985, 1 (01) : 23 - 28
  • [27] Anti-Ramsey multiplicities
    De Silva, Jessica
    Si, Xiang
    Tait, Michael
    Tuncbilek, Yunus
    Yang, Ruifan
    Young, Michael
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 357 - 371
  • [28] Extremal coloring for the anti-Ramsey problem of matchings in complete graphs
    Jin, Zemin
    Sun, Yuefang
    Yan, Sherry H. F.
    Zang, Yuping
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1012 - 1028
  • [29] An Anti-Ramsey Theorem
    J. J. Montellano-Ballesteros
    V. Neumann-Lara
    Combinatorica, 2002, 22 : 445 - 449
  • [30] Extremal coloring for the anti-Ramsey problem of matchings in complete graphs
    Zemin Jin
    Yuefang Sun
    Sherry H. F. Yan
    Yuping Zang
    Journal of Combinatorial Optimization, 2017, 34 : 1012 - 1028