Path Ramsey Number for Random Graphs

被引:37
|
作者
Letzter, Shoham [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
来源
COMBINATORICS PROBABILITY & COMPUTING | 2016年 / 25卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
MONOCHROMATIC CYCLES;
D O I
10.1017/S0963548315000279
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Answering a question raised by Dudek and Pralat, we show that if pn -> infinity, w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length (2/3 + o(1))n. This result is optimal in the sense that 2/3 cannot be replaced by a larger constant. As part of the proof we obtain the following result. Given a graph G on n vertices with at least (1 - epsilon) [GRAPHICS] edges, whenever G is 2-edge-coloured, there is a monochromatic path of length at least (2/3 - 110 root epsilon)n. This is an extension of the classical result by Gerencser and Gyarfas which says that whenever K-n is 2-coloured there is a monochromatic path of length at least 2n/3.
引用
收藏
页码:612 / 622
页数:11
相关论文
共 50 条
  • [1] Ramsey simplicity of random graphs
    Boyadzhiyska, Simona
    Clemens, Dennis
    Das, Shagnik
    Gupta, Pranshu
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [2] The Ramsey number of dense graphs
    Conlon, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 483 - 496
  • [3] RAMSEY PROPERTIES OF RANDOM GRAPHS
    LUCZAK, T
    RUCINSKI, A
    VOIGT, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (01) : 55 - 68
  • [4] A threading path to a Ramsey number
    Blanck, Nora
    Jungic, Veselin
    JOURNAL OF MATHEMATICS AND THE ARTS, 2024, 18 (3-4) : 258 - 271
  • [5] Stability of the path-path Ramsey number
    Gyarfas, Andras
    Sarkozy, Gabor N.
    Szemeredi, Endre
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4590 - 4595
  • [6] On the Geometric Ramsey Number of Outerplanar Graphs
    Josef Cibulka
    Pu Gao
    Marek Krčál
    Tomáš Valla
    Pavel Valtr
    Discrete & Computational Geometry, 2015, 53 : 64 - 79
  • [7] Large Chromatic Number and Ramsey Graphs
    Csaba Biró
    Zoltán Füredi
    Sogol Jahanbekam
    Graphs and Combinatorics, 2013, 29 : 1183 - 1191
  • [8] Graphs with Arbitrary Ramsey Number and Connectivity
    Ahme, Isabel
    Scott, Alex
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [9] Large Chromatic Number and Ramsey Graphs
    Biro, Csaba
    Fueredi, Zoltan
    Jahanbekam, Sogol
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1183 - 1191
  • [10] Ramsey goodness of trees in random graphs
    Araujo, Pedro
    Moreira, Luiz
    Pavez-Signe, Matias
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 761 - 790