Stability of the path-path Ramsey number

被引:6
|
作者
Gyarfas, Andras [1 ]
Sarkozy, Gabor N. [1 ,2 ]
Szemeredi, Endre [3 ,4 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
[2] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
[4] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Ramsey theory; Stability; Path;
D O I
10.1016/j.disc.2009.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph K. we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4590 / 4595
页数:6
相关论文
共 50 条
  • [1] PATH-PATH RAMSEY-TYPE NUMBERS FOR COMPLETE BIPARTITE GRAPH
    FAUDREE, RJ
    SCHELP, RH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (02) : 161 - 173
  • [2] The Size, Multipartite Ramsey Numbers for nK2 Versus Path-Path and Cycle
    Rowshan, Yaser
    Gholami, Mostafa
    Shateyi, Stanford
    MATHEMATICS, 2021, 9 (07)
  • [3] A threading path to a Ramsey number
    Blanck, Nora
    Jungic, Veselin
    JOURNAL OF MATHEMATICS AND THE ARTS, 2024, 18 (3-4) : 258 - 271
  • [4] The size Ramsey number of a directed path
    Ben-Eliezer, Ido
    Krivelevich, Michael
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) : 743 - 755
  • [5] Path Ramsey Number for Random Graphs
    Letzter, Shoham
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (04): : 612 - 622
  • [6] On the cycle-path bipartite Ramsey number
    Joubert, Ernst J.
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2024, 347 (02)
  • [7] Multicolor Ramsey Number of Stars Versus a Path
    Xuejun ZHANG
    Xinmin HOU
    Journal of Mathematical Research with Applications, 2024, 44 (04) : 465 - 469
  • [8] ON THE PATH-COMPLETE BIPARTITE RAMSEY NUMBER
    HAGGKVIST, R
    DISCRETE MATHEMATICS, 1989, 75 (1-3) : 243 - 245
  • [9] The Ramsey number of the Fano plane versus the tight path
    Balogh, Jozsef
    Clemen, Felix Christian
    Skokan, Jozef
    Wagner, Adam Zsolt
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (01):
  • [10] On the size Ramsey number of all cycles versus a path
    Bal, Deepak
    Schudrich, Ely
    DISCRETE MATHEMATICS, 2021, 344 (05)