Stability of the path-path Ramsey number

被引:6
|
作者
Gyarfas, Andras [1 ]
Sarkozy, Gabor N. [1 ,2 ]
Szemeredi, Endre [3 ,4 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
[2] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
[4] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Ramsey theory; Stability; Path;
D O I
10.1016/j.disc.2009.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph K. we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4590 / 4595
页数:6
相关论文
共 50 条
  • [31] Star-path bipartite Ramsey numbers
    Hattingh, JH
    Henning, MA
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 255 - 258
  • [32] Size Ramsey Results for the Path of Order Three
    Roland Lortz
    Ingrid Mengersen
    Graphs and Combinatorics, 2021, 37 : 2315 - 2331
  • [33] Separated-path Ramsey atom interferometer
    Featonby, PD
    Summy, GS
    Webb, CL
    Godun, RM
    Oberthaler, MK
    Wilson, AC
    Foot, CJ
    Burnett, K
    PHYSICAL REVIEW LETTERS, 1998, 81 (03) : 495 - 499
  • [34] The 3-color Ramsey number for a 3-uniform loose path of length 3
    Jackowska, Eliza
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 314 - 320
  • [35] Ramsey-type results for path covers and path partitions. II. digraphs
    Chiba, Shuya
    Furuya, Michitaka
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [36] Limits of the separated-path Ramsey atom interferometer
    Godun, RM
    Webb, CL
    Featonby, PD
    d'Arcy, MB
    Oberthaler, MK
    Summy, GS
    Foot, CJ
    Burnett, K
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (20) : 5033 - 5045
  • [37] Size-Ramsey numbers of cycles versus a path
    Dudek, Andrzej
    Khoeini, Farideh
    Pralat, Pawet
    DISCRETE MATHEMATICS, 2018, 341 (07) : 2095 - 2103
  • [38] Constrained Ramsey numbers for the loose path, cycle and star
    Liu, Xiangxiang
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [39] Closing the gap on path-kipas Ramsey numbers
    Li, Binlong
    Zhang, Yanbo
    Bielak, Halina
    Broersma, Hajo
    Holub, Premysl
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [40] PATH NUMBER OF BIPARTITE DIGRAPHS
    FRYE, WG
    LASKAR, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (02) : 243 - 244