PGRA: Projected graph relation-feature attention network for heterogeneous information network embedding

被引:17
|
作者
Chairatanakul, Nuttapong [1 ,3 ]
Liu, Xin [2 ,3 ]
Murata, Tsuyoshi [1 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Comp Sci, Sch Comp, Tokyo, Japan
[2] Natl Inst Adv Ind Sci & Technol, AIRC, Tokyo, Japan
[3] AIST Tokyo Tech Real World Big Data Computat Open, Tokyo, Japan
关键词
Heterogeneous information network; Graph neural network; Graph embedding; Attention;
D O I
10.1016/j.ins.2021.04.070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph neural networks (GNNs) have achieved superior performance and gained significant interest in various domains. However, most of the existing GNNs are considered for homogeneous graphs, whereas real-world systems are usually modeled as heterogeneous graphs or heterogeneous information networks (HINs). Designing a GNN to fully capture the rich semantic information of HINs is significantly challenging owing to the heterogeneity and incompatibility of relations in HINs. To address these issues while utilizing the power of GNNs, we propose a novel unsupervised embedding approach, named Projected Graph Relation-Feature Attention Network (PGRA). PGRA is based on three mechanisms: 1) specific-relation projection that projects the representation vector of each node to a relation-specific space, 2) aggregation with a relation-feature attention network that learns salient neighbors in the aggregation by considering the features of the nodes and compatibility between the connected and target relations, 3) an elegantly designed loss function that captures both the first-and second-order proximities between nodes. The results of extensive experiments on seven real-world datasets illustrate that PGRA outperforms the state-of-the-art methods by a large margin. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:769 / 794
页数:26
相关论文
共 50 条
  • [41] Learning knowledge graph embedding with a dual-attention embedding network
    Fang, Haichuan
    Wang, Youwei
    Tian, Zhen
    Ye, Yangdong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [42] GAHNE: Graph-Aggregated Heterogeneous Network Embedding
    Li, Xiaohe
    Wen, Lijie
    Qian, Chen
    Wang, Jianmin
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 1012 - 1019
  • [43] Feature Interaction Convolutional Network for Knowledge Graph Embedding
    Li, Jiachuan
    Li, Aimin
    Liu, Teng
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 369 - 380
  • [44] Heterogeneous Attributed Network Embedding with Graph Convolutional Networks
    Wang, Yueyang
    Duan, Ziheng
    Liao, Binbing
    Wu, Fei
    Zhuang, Yueting
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 10061 - 10062
  • [45] An efficient graph embedding clustering approach for heterogeneous network
    Sajjadi, Zahra Sadat
    Esmaeili, Mahdi
    Ghobaei-Arani, Mostafa
    Minaei-Bidgoli, Behrouz
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 19562 - 19591
  • [46] A Fast Heterogeneous Information Network Embedding Framework
    Wang, Kuangmeng
    Zhang, Hong
    Proceedings of the International Joint Conference on Neural Networks, 2024,
  • [47] Embedding Heterogeneous Information Network in Hyperbolic Spaces
    Zhang, Yiding
    Wang, Xiao
    Liu, Nian
    Shi, Chuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [48] Heterogeneous Information Network Embedding for Mention Recommendation
    Yi, Feng
    Jiang, Bo
    Wu, Jianjun
    IEEE ACCESS, 2020, 8 : 91394 - 91404
  • [49] Heterogeneous Information Network Embedding With Adversarial Disentangler
    Wang, Ruijia
    Shi, Chuan
    Zhao, Tianyu
    Wang, Xiao
    Ye, Yanfang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1581 - 1593
  • [50] AHINE: Adaptive Heterogeneous Information Network Embedding
    Lin, Yucheng
    Hong, Huiting
    Yang, Xiaoqing
    Gong, Pinghua
    Li, Zang
    Ye, Jieping
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 100 - 107