PGRA: Projected graph relation-feature attention network for heterogeneous information network embedding

被引:17
|
作者
Chairatanakul, Nuttapong [1 ,3 ]
Liu, Xin [2 ,3 ]
Murata, Tsuyoshi [1 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Comp Sci, Sch Comp, Tokyo, Japan
[2] Natl Inst Adv Ind Sci & Technol, AIRC, Tokyo, Japan
[3] AIST Tokyo Tech Real World Big Data Computat Open, Tokyo, Japan
关键词
Heterogeneous information network; Graph neural network; Graph embedding; Attention;
D O I
10.1016/j.ins.2021.04.070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph neural networks (GNNs) have achieved superior performance and gained significant interest in various domains. However, most of the existing GNNs are considered for homogeneous graphs, whereas real-world systems are usually modeled as heterogeneous graphs or heterogeneous information networks (HINs). Designing a GNN to fully capture the rich semantic information of HINs is significantly challenging owing to the heterogeneity and incompatibility of relations in HINs. To address these issues while utilizing the power of GNNs, we propose a novel unsupervised embedding approach, named Projected Graph Relation-Feature Attention Network (PGRA). PGRA is based on three mechanisms: 1) specific-relation projection that projects the representation vector of each node to a relation-specific space, 2) aggregation with a relation-feature attention network that learns salient neighbors in the aggregation by considering the features of the nodes and compatibility between the connected and target relations, 3) an elegantly designed loss function that captures both the first-and second-order proximities between nodes. The results of extensive experiments on seven real-world datasets illustrate that PGRA outperforms the state-of-the-art methods by a large margin. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:769 / 794
页数:26
相关论文
共 50 条
  • [31] Clustering Heterogeneous Information Network by Joint Graph Embedding and Nonnegative Matrix Factorization
    Zhang, Benhui
    Gong, Maoguo
    Huang, Jianbin
    Ma, Xiaoke
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (04)
  • [32] Learning Knowledge Graph Embedding With Heterogeneous Relation Attention Networks
    Li, Zhifei
    Liu, Hai
    Zhang, Zhaoli
    Liu, Tingting
    Xiong, Neal N.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3961 - 3973
  • [33] Semantic Feature-Enhanced Graph ATtention Network for Radar Target Recognition in Heterogeneous Radar Network
    Meng, Han
    Peng, Yuexing
    Xiang, Wei
    Pang, Xu
    Wang, Wenbo
    IEEE SENSORS JOURNAL, 2023, 23 (07) : 6369 - 6377
  • [34] RELATION HETEROGENEOUS GRAPH NEURAL NETWORK
    Yu Jielin
    Wei Zukuan
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [35] GEHGAN : CircRNA-disease association prediction via graph embedding and heterogeneous graph attention network
    Wang, Yuehao
    Lu, Pengli
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 110
  • [36] DisenKGAT: Knowledge Graph Embedding with Disentangled Graph Attention Network
    Wu, Junkang
    Shi, Wentao
    Cao, Xuezhi
    Chen, Jiawei
    Lei, Wenqiang
    Zhang, Fuzheng
    Wu, Wei
    He, Xiangnan
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2140 - 2149
  • [37] Heterogeneous Graph Neural Network with Hypernetworks for Knowledge Graph Embedding
    Liu, Xiyang
    Zhu, Tong
    Tan, Huobin
    Zhang, Richong
    SEMANTIC WEB - ISWC 2022, 2022, 13489 : 284 - 302
  • [38] HeMGNN: Heterogeneous Network Embedding Based on a Mixed Graph Neural Network
    Zhong, Hongwei
    Wang, Mingyang
    Zhang, Xinyue
    ELECTRONICS, 2023, 12 (09)
  • [39] Heterogeneous graph attention network with motif clique
    Wang, Chenxu
    Luo, Minnan
    Peng, Zhen
    Dong, Yixiang
    Liu, Huaping
    NEUROCOMPUTING, 2023, 555
  • [40] Learning Signed Network Embedding via Graph Attention
    Li, Yu
    Tian, Yuan
    Zhang, Jiawei
    Chang, Yi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4772 - 4779