Kramers-like escape driven by fractional Gaussian noise

被引:55
|
作者
Sliusarenko, Oleksii Yu. [1 ]
Gonchar, Vsevolod Yu. [1 ]
Chechkin, Aleksei V. [1 ,2 ]
Sokolov, Igor M. [3 ]
Metzler, Ralf [4 ]
机构
[1] NSC KIPT, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
CONTROLLED INTRACHAIN REACTIONS; SINGLE-PARTICLE TRAJECTORIES; BROWNIAN-MOTION; ANOMALOUS DIFFUSION; MATHEMATICAL-ANALYSIS; MARKOV-PROCESSES; HURST EXPONENTS; LEVY FLIGHTS; TRANSPORT; TIME;
D O I
10.1103/PhysRevE.81.041119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with Hurst exponent 0 < H < 1. From a numerical analysis we demonstrate the exponential distribution of escape times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and the particle diffusivity D. We observe different behavior for the subdiffusive (antipersistent) and superdiffusive (persistent) domains. In particular, we find that the escape becomes increasingly faster for decreasing values of H, consistent with previous findings on the first passage behavior. Approximate analytical calculations are shown to support the numerically observed dependencies.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Quantum Kramers-like theory of the electron-transfer rate from weak-to-strong electronic coupling regions
    Zhao, Yi
    Liang, WanZhen
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [42] Time fractional and space nonlocal stochastic nonlinear Schrodinger equation driven by Gaussian white noise
    Liang, Jiarui
    Shen, Tianlong
    Qian, Xu
    Song, Songhe
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (02) : 123 - 136
  • [43] Path integrals for fractional Brownian motion and fractional Gaussian noise
    Meerson, Baruch
    Benichou, Olivier
    Oshanin, Gleb
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [44] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774
  • [45] ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1567 - 1571
  • [46] Bubble Entropy of Fractional Gaussian Noise and Fractional Brownian Motion
    Manis, George
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [47] A Study of the Characteristics of MEMD for Fractional Gaussian Noise
    Hao, Huan
    Wang, Huali
    Ur Rehman, Naveed
    Tian, Hui
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (06): : 1228 - 1232
  • [48] BARRIER CROSSING INDUCED BY FRACTIONAL GAUSSIAN NOISE
    Sliusarenko, O. Yu.
    Gonchar, V. Yu.
    Chechkin, A. V.
    UKRAINIAN JOURNAL OF PHYSICS, 2010, 55 (05): : 579 - 585
  • [49] An EMD based simulation of fractional Gaussian noise
    Shan, Peiwei
    Li, Ming
    WSEAS: INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS, 2008, : 72 - 76
  • [50] Fractional Gaussian Noise and Network Traffic Modeling
    Li, Ming
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 34 - +