Kramers-like escape driven by fractional Gaussian noise

被引:55
|
作者
Sliusarenko, Oleksii Yu. [1 ]
Gonchar, Vsevolod Yu. [1 ]
Chechkin, Aleksei V. [1 ,2 ]
Sokolov, Igor M. [3 ]
Metzler, Ralf [4 ]
机构
[1] NSC KIPT, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
CONTROLLED INTRACHAIN REACTIONS; SINGLE-PARTICLE TRAJECTORIES; BROWNIAN-MOTION; ANOMALOUS DIFFUSION; MATHEMATICAL-ANALYSIS; MARKOV-PROCESSES; HURST EXPONENTS; LEVY FLIGHTS; TRANSPORT; TIME;
D O I
10.1103/PhysRevE.81.041119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with Hurst exponent 0 < H < 1. From a numerical analysis we demonstrate the exponential distribution of escape times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and the particle diffusivity D. We observe different behavior for the subdiffusive (antipersistent) and superdiffusive (persistent) domains. In particular, we find that the escape becomes increasingly faster for decreasing values of H, consistent with previous findings on the first passage behavior. Approximate analytical calculations are shown to support the numerically observed dependencies.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Nonlinear fractional stochastic heat equation driven by Gaussian noise rough in space
    Liu, Junfeng
    Mao, Lei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 181
  • [22] Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise
    Chen, Le
    Hu, Yaozhong
    Kalbasi, Kamran
    Nualart, David
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 431 - 457
  • [23] Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise
    Le Chen
    Yaozhong Hu
    Kamran Kalbasi
    David Nualart
    Probability Theory and Related Fields, 2018, 171 : 431 - 457
  • [24] Fractional Kinetic Equation Driven by General Space–Time Homogeneous Gaussian Noise
    Junfeng Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 3475 - 3499
  • [25] Fractional Brownian motion and fractional Gaussian noise
    Qian, H
    PROCESSES WITH LONG-RANGE CORRELATIONS: THEORY AND APPLICATIONS, 2003, 621 : 22 - 33
  • [26] NUMERICAL ANALYSIS FOR STOCHASTIC TIME-SPACE FRACTIONAL DIFFUSION EQUATION DRIVEN BY FRACTIONAL GAUSSIAN NOISE
    Nie, Daxin
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023,
  • [27] ESCAPE DRIVEN BY STRONGLY CORRELATED NOISE
    HANGGI, P
    JUNG, P
    MARCHESONI, F
    JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (5-6) : 1367 - 1380
  • [28] Space-time fractional Anderson model driven by Gaussian noise rough in space
    Liu, Junfeng
    Wang, Zhi
    Wang, Zengwu
    STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [29] Stochastic stability of a fractional viscoelastic plate driven by non-Gaussian colored noise
    Hu, Dongliang
    Huang, Yong
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1165 - 1178
  • [30] TIME FRACTIONAL AND SPACE NONLOCAL STOCHASTIC BOUSSINESQ EQUATIONS DRIVEN BY GAUSSIAN WHITE NOISE
    Shen, Tianlong
    Huang, Jianhua
    Zeng, Caibin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04): : 1523 - 1533