Kramers-like escape driven by fractional Gaussian noise

被引:55
|
作者
Sliusarenko, Oleksii Yu. [1 ]
Gonchar, Vsevolod Yu. [1 ]
Chechkin, Aleksei V. [1 ,2 ]
Sokolov, Igor M. [3 ]
Metzler, Ralf [4 ]
机构
[1] NSC KIPT, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
CONTROLLED INTRACHAIN REACTIONS; SINGLE-PARTICLE TRAJECTORIES; BROWNIAN-MOTION; ANOMALOUS DIFFUSION; MATHEMATICAL-ANALYSIS; MARKOV-PROCESSES; HURST EXPONENTS; LEVY FLIGHTS; TRANSPORT; TIME;
D O I
10.1103/PhysRevE.81.041119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with Hurst exponent 0 < H < 1. From a numerical analysis we demonstrate the exponential distribution of escape times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and the particle diffusivity D. We observe different behavior for the subdiffusive (antipersistent) and superdiffusive (persistent) domains. In particular, we find that the escape becomes increasingly faster for decreasing values of H, consistent with previous findings on the first passage behavior. Approximate analytical calculations are shown to support the numerically observed dependencies.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Transport and escape in a deformable channel driven by fractional Gaussian noise
    Mei, Ruoxing
    Xu, Yong
    Kurths, Juergen
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [2] Kramers-like turnover in activationless rate processes
    Bicout, DJ
    Berezhkovskii, AM
    Szabo, A
    Weiss, GH
    PHYSICAL REVIEW LETTERS, 1999, 83 (07) : 1279 - 1282
  • [3] The escape problem and stochastic resonance in a bistable system driven by fractional Gaussian noise
    Wang, Wei
    Yan, Zhi
    Liu, Xianbin
    PHYSICS LETTERS A, 2017, 381 (29) : 2324 - 2336
  • [4] Fractional oscillator driven by a Gaussian noise
    Drozdov, A. D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 376 : 237 - 245
  • [5] Kramers-like turnover in load-dependent activated dynamics
    Mondal, Debasish
    Ghosh, Pulak Kumar
    Ray, Deb Shankar
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (02):
  • [6] Cancellation phenomenon of barrier escape driven by a non-Gaussian noise
    Bao, JD
    Wang, HY
    Jia, Y
    Zhuo, YZ
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [7] Fractional kinetic equations driven by Gaussian or infinitely divisible noise
    Angulo, JM
    Anh, VV
    McVinish, R
    Ruiz-Medina, MD
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 366 - 392
  • [8] Modeling continuous time series driven by fractional Gaussian noise
    Chow, WC
    Wegman, EJ
    TIME SERIES ANALYSIS AND APPLICATIONS TO GEOPHYSICAL SYSTEMS, 2004, : 239 - 255
  • [9] Energy of the stochastic wave equation driven by a fractional Gaussian noise
    Belinskiy, Boris P.
    Caithamer, Peter
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2007, 15 (04) : 303 - 326
  • [10] Complex chemical kinetics in single enzyme molecules: Kramers's model with fractional Gaussian noise
    Chaudhury, Srabanti
    Cherayil, Binny J.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (02):