Efficient normal basis multipliers in composite fields

被引:0
|
作者
Oh, S
Kim, CH
Lim, J
Cheon, DH
机构
[1] Korea Univ, Ctr Informat Secur Technol, Seoul 136701, South Korea
[2] Semyung Univ, Dept Comp Aided Math Informat Sci, Jecheon 390711, Chungbuk, South Korea
关键词
finite field; composite field; optimal normal basis; bit-parallel multiplier;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
It is well-known that a class of finite fields GF(2(n)) using an optimal normal basis is most suitable for a hardware implementation of arithmetic in finite fields. In this paper, we introduce composite fields of some hardware-applicable properties resulting from the normal basis representation and the optimal condition. We also present a hardware architecture of the proposed composite fields including a hit-parallel multiplier.
引用
收藏
页码:1133 / 1138
页数:6
相关论文
共 50 条
  • [41] Efficient Simulation of (Log)Normal Random Fields for Hydrogeological Applications
    Kyriakidis, Phaedon
    Gaganis, Petros
    MATHEMATICAL GEOSCIENCES, 2013, 45 (05) : 531 - 556
  • [42] Efficient Simulation of (Log)Normal Random Fields for Hydrogeological Applications
    Phaedon Kyriakidis
    Petros Gaganis
    Mathematical Geosciences, 2013, 45 : 531 - 556
  • [43] An efficient method for computing the simplest normal forms of vector fields
    Yu, P
    Yuan, Y
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 19 - 46
  • [44] ON A RELATIVE NORMAL INTEGRAL BASIS PROBLEM OVER ABELIAN NUMBER-FIELDS
    ICHIMURA, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (10) : 413 - 416
  • [45] Elliptic curve point counting over finite fields with Gaussian normal basis
    Park, JH
    Park, JY
    Hahn, SG
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (01) : 5 - 8
  • [46] WEAKLY NORMAL BASIS VECTOR FIELDS IN RKHS WITH AN APPLICATION TO SHAPE NEWTON METHODS
    Paganini, Alberto
    Sturm, Kevin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 1 - 26
  • [47] Efficient parallel exponentiation in GF(qn) using normal basis representations
    Lee, MK
    Kim, Y
    Park, K
    Cho, Y
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2005, 54 (02): : 205 - 221
  • [48] Efficient advanced encryption standard implementation using lookup and normal basis
    Burns, F.
    Murphy, J.
    Koelmans, A.
    Yakovlev, A.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2009, 3 (03): : 270 - 280
  • [49] On uniqueness of Lagrange multipliers in composite optimization
    Deng, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 201 (03) : 689 - 696
  • [50] FPGA accelerated multipliers over binary composite fields constructed via low hamming weight irreducible polynomials
    Shu, C.
    Kwon, S.
    Gaj, K.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2008, 2 (01): : 6 - 11