Efficient normal basis multipliers in composite fields

被引:0
|
作者
Oh, S
Kim, CH
Lim, J
Cheon, DH
机构
[1] Korea Univ, Ctr Informat Secur Technol, Seoul 136701, South Korea
[2] Semyung Univ, Dept Comp Aided Math Informat Sci, Jecheon 390711, Chungbuk, South Korea
关键词
finite field; composite field; optimal normal basis; bit-parallel multiplier;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
It is well-known that a class of finite fields GF(2(n)) using an optimal normal basis is most suitable for a hardware implementation of arithmetic in finite fields. In this paper, we introduce composite fields of some hardware-applicable properties resulting from the normal basis representation and the optimal condition. We also present a hardware architecture of the proposed composite fields including a hit-parallel multiplier.
引用
收藏
页码:1133 / 1138
页数:6
相关论文
共 50 条
  • [21] ON A GENERALIZATION OF THE NORMAL BASIS IN ABELIAN ALGEBRAIC NUMBER FIELDS
    NEWMAN, M
    TAUSSKY, O
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1956, 9 (01) : 85 - 91
  • [22] GENERALIZATIONS OF THE NORMAL BASIS THEOREM OF FINITE-FIELDS
    BSHOUTY, NH
    SEROUSSI, G
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) : 330 - 337
  • [23] Completely normal primitive basis generators of finite fields
    Morgan, IH
    Mullen, GL
    UTILITAS MATHEMATICA, 1996, 49 : 21 - 43
  • [24] Low complexity sequential normal basis multipliers over GF(2m)
    Reyhani-Masoleh, A
    Hasan, MA
    16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2003, : 188 - 195
  • [25] Evaluation of business on the basis of multipliers
    Bacher, Urban
    Stober, Kai
    INTERDISCIPLINARY MANAGEMENT RESEARCH IV, 2008, : 254 - 263
  • [26] An efficient optimal normal basis type II multiplier
    Sunar, B
    Koç, ÇK
    IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (01) : 83 - 87
  • [27] Performance Analysis of Gaussian Normal Basis GF (2m) Serial Multipliers and Inverters
    Puligunta, Mahidhar
    El-Razouk, Hayssam
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 738 - 746
  • [29] Acoustic tomography of temperature and velocity fields by using the radial basis function and alternating direction method of multipliers
    Zhang, Juqi
    Qi, Hong
    Ren, Yatao
    Su, Mingxu
    Cai, Xiaoshu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 188
  • [30] Basis translation matrix between two isomorphic extension fields via optimal normal basis
    Nogami, Yasuyuki
    Namba, Ryo
    Morikawa, Yoshitaka
    ETRI JOURNAL, 2008, 30 (02) : 326 - 334