Berezinskii-Kosterlitz-Thouless transition and BCS-Bose crossover in the two-dimensional attractive Hubbard model

被引:23
|
作者
Dupuis, N [1 ]
机构
[1] Univ Paris 11, CNRS, UMR 8502, Phys Solides Lab, F-91405 Orsay, France
关键词
D O I
10.1103/PhysRevB.70.134502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the two-dimensional attractive Hubbard model using the mapping onto the half-filled repulsive Hubbard model in a uniform magnetic field coupled to the fermion spins. The low-energy effective action for charge and pairing fluctuations is obtained in the hydrodynamic regime. We recover the action of a Bose superfluid where half the fermion density is identified as the conjugate variable of the phase of the superconducting order parameter. By integrating out charge fluctuations, we obtain a phase-only action. In the zero-temperature superconducting state, this action describes a collective phase mode smoothly evolving from the Anderson-Bogoliubov mode at weak coupling to the Bogoliubov mode of a Bose superfluid at strong coupling. At finite temperature, the phase-only action can be used to extract an effective XY model and thus obtain the Berezinskii-Kosterlitz-Thouless (BKT) phase transition temperature. We also identify a renormalized classical regime of superconducting fluctuations above the BKT phase transition, and a regime of incoherent pairs at higher temperature. Special care is devoted to the nearly half-filled case where the symmetry of the order parameter is enlarged to SO(3) due to strong q=(pi,pi) charge fluctuations. The low-energy effective action is then an SO(3) nonlinear sigma model with a (symmetry breaking) magnetic field proportional to the doping. In the strong-coupling limit, the attractive Hubbard model can be mapped onto the Heisenberg model in a magnetic field, which reduces to the quantum XY model (except for a weak magnetic field, i.e., in the low-density limit of the attractive model). In the low-density limit, the Heisenberg model allows one to recover the action of a Bose superfluid, including the (delrho)(2) term (with rho the density), and in turn the Gross-Pitaevskii equation.
引用
收藏
页码:134502 / 1
页数:29
相关论文
共 50 条
  • [41] Fulde-Ferrell states and Berezinskii-Kosterlitz-Thouless phase transition in two-dimensional imbalanced Fermi gases
    Yin, Shaoyu
    Martikainen, J. -P.
    Torma, P.
    PHYSICAL REVIEW B, 2014, 89 (01)
  • [42] Fluctuation conductance and the Berezinskii-Kosterlitz-Thouless transition in two dimensional epitaxial NbTiN ultrathin films
    Makise, K.
    Terai, H.
    Yamashita, T.
    Miki, S.
    Wang, Z.
    Uzawa, Y.
    Ezaki, S.
    Odou, T.
    Shinozaki, B.
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [43] Two-dimensional attractive Hubbard model and the BCS-BEC crossover
    Fontenele, Rodrigo A.
    Costa, Natanael C.
    dos Santos, Raimundo R.
    Paiva, Thereza
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [44] Hybrid Berezinskii-Kosterlitz-Thouless and Ising topological phase transition in the generalized two-dimensional XY model using tensor networks
    Song, Feng-Feng
    Zhang, Guang-Ming
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [45] Probing the Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry
    Curtis, Jonathan B.
    Maksimovic, Nikola
    Poniatowski, Nicholas R.
    Yacoby, Amir
    Halperin, Bertrand
    Narang, Prineha
    Demler, Eugene
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [46] QUANTUM EFFECTS ON THE BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION IN THE FERROMAGNETIC 2-DIMENSIONAL XXZ MODEL
    CUCCOLI, A
    TOGNETTI, V
    VERRUCCHI, P
    VAIA, R
    PHYSICAL REVIEW B, 1995, 51 (18): : 12840 - 12843
  • [47] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models
    Borisenko, Oleg
    Chelnokov, Volodymyr
    Cuteri, Francesca
    Papa, Alessandro
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [48] Evolution from BCS to Berezinskii-Kosterlitz-Thouless Superfluidity in One-Dimensional Optical Lattices
    Iskin, M.
    de Melo, C. A. R. Sa
    PHYSICAL REVIEW LETTERS, 2009, 103 (16)
  • [49] A scheme to observe universal breathing mode and Berezinskii-Kosterlitz-Thouless phase transition in a two-dimensional photon gas
    Vyas, Vivek M.
    Panigrahi, Prasanta K.
    Banerji, J.
    PHYSICS LETTERS A, 2014, 378 (20) : 1434 - 1437
  • [50] Observable signature of the Berezinskii-Kosterlitz-Thouless transition in a planar lattice of Bose-Einstein condensates
    Trombettoni, A
    Smerzi, A
    Sodano, P
    NEW JOURNAL OF PHYSICS, 2005, 7