Non-trivial m-quasi-Einstein metrics on quadratic Lie groups

被引:1
|
作者
Chen, Zhiqi [1 ,2 ]
Liang, Ke [1 ,2 ]
Yi, Fahuai [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
m-quasi-Einstein metric; Left-invariant metric; Quadratic Lie group; Quadratic Lie algebra; Killing vector field; SCALAR CURVATURE; RICCI SOLITONS;
D O I
10.1007/s00013-016-0887-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a metric m-quasi-Einstein if (a modification of the m-Bakry-Emery Ricci tensor in terms of a suitable vector field X) is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contain Ricci solitons. In this paper, we focus on left-invariant vector fields and left-invariant Riemannian metrics on quadratic Lie groups. First we prove that any left-invariant vector field X such that the left-invariant Riemannian metric on a quadratic Lie group is m-quasi-Einstein is a Killing vector field. Then we construct infinitely many non-trivial m-quasi-Einstein metrics on solvable quadratic Lie groups G(n) for m finite.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条
  • [1] Non-trivial m-quasi-Einstein metrics on quadratic Lie groups
    Zhiqi Chen
    Ke Liang
    Fahuai Yi
    Archiv der Mathematik, 2016, 106 : 391 - 399
  • [2] Non-trivial m-quasi-Einstein metrics on simple Lie groups
    Chen, Zhiqi
    Liang, Ke
    Zhu, Fuhai
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) : 1093 - 1109
  • [3] Non-trivial m-quasi-Einstein metrics on simple Lie groups
    Zhiqi Chen
    Ke Liang
    Fuhai Zhu
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1093 - 1109
  • [4] Characterizations and integral formulae for generalized m-quasi-Einstein metrics
    Abdênago Barros
    Ernani Ribeiro
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 325 - 341
  • [5] Characterizations and integral formulae for generalized m-quasi-Einstein metrics
    Barros, Abenago
    Ribeiro, Ernani, Jr.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (02): : 325 - 341
  • [6] On m-quasi-Einstein spacetimes
    Shaikh, Absos Ali
    Hui, Shyamal Kumar
    Patra, Akshoy
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (05)
  • [7] AN ANALYSIS OF SYMMETRY GROUPS OF GENERALIZED m-QUASI-EINSTEIN MANIFOLDS
    Correia, Paula
    Leandro, Benedito
    Pina, Romildo
    COLLOQUIUM MATHEMATICUM, 2023, 173 (01) : 77 - 88
  • [8] m-Quasi-Einstein Metrics Satisfying Certain Conditions on the Potential Vector Field
    Amalendu Ghosh
    Mediterranean Journal of Mathematics, 2020, 17
  • [9] m-Quasi-Einstein Metrics Satisfying Certain Conditions on the Potential Vector Field
    Ghosh, Amalendu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (04)
  • [10] Triviality of Compact m-Quasi-Einstein Manifolds
    Barros, Abdenago A.
    Gomes, Jose N. V.
    RESULTS IN MATHEMATICS, 2017, 71 (1-2) : 241 - 250