On Robust Trimming of Bayesian Network Classifiers

被引:0
|
作者
Choi, Yoo Jung [1 ]
Van den Broeck, Guy [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
关键词
INFORMATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the problem of removing costly features from a Bayesian network classifier. We want the classifier to be robust to these changes, and maintain its classification behavior. To this end, we propose a closeness metric between Bayesian classifiers, called the expected classification agreement (ECA). Our corresponding trimming algorithm finds an optimal subset of features and a new classification threshold that maximize the expected agreement, subject to a budgetary constraint. It utilizes new theoretical insights to perform branch-and-bound search in the space of feature sets, while computing bounds on the ECA. Our experiments investigate both the runtime cost of trimming and its effect on the robustness and accuracy of the final classifier.
引用
收藏
页码:5002 / 5009
页数:8
相关论文
共 50 条
  • [31] Adaptive learning algorithms for Bayesian network classifiers
    Departamento de Matemática, CEOC, Universidade de Aveiro, Aveiro 3810-193, Portugal
    AI Commun, 2008, 1 (87-88):
  • [32] On discriminative Bayesian network classifiers and logistic regression
    Roos T.
    Wettig H.
    Grünwald P.
    Myllymäki P.
    Tirri H.
    Machine Learning, 2005, 59 (03) : 267 - 296
  • [33] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [34] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [35] Bayesian Network Model Averaging Classifiers by Subbagging
    Sugahara, Shouta
    Aomi, Itsuki
    Ueno, Maomi
    ENTROPY, 2022, 24 (05)
  • [36] Aligning Bayesian Network Classifiers with Medical Contexts
    van der Gaag, Linda C.
    Renooij, Silja
    Feelders, Ad
    de Groote, Arend
    Eijkemans, Marinus J. C.
    Broekmans, Frank J.
    Fauser, Bart C. J. M.
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2009, 5632 : 787 - +
  • [37] Adaptive learning algorithms for Bayesian network classifiers
    Castillo, Gladys
    AI COMMUNICATIONS, 2008, 21 (01) : 87 - 88
  • [38] Bayesian Network Model Averaging Classifiers by Subbagging
    Sugahara, Shouta
    Aomi, Itsuki
    Ueno, Maomi
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 461 - 472
  • [39] Extension of Bayesian Network Classifiers to Regression Problems
    Fernandez, Antonio
    Salmeron, Antonio
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2008, PROCEEDINGS, 2008, 5290 : 83 - 92
  • [40] Cost-sensitive Bayesian network classifiers
    Jiang, Liangxiao
    Li, Chaoqun
    Wang, Shasha
    PATTERN RECOGNITION LETTERS, 2014, 45 : 211 - 216