On Robust Trimming of Bayesian Network Classifiers

被引:0
|
作者
Choi, Yoo Jung [1 ]
Van den Broeck, Guy [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
关键词
INFORMATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the problem of removing costly features from a Bayesian network classifier. We want the classifier to be robust to these changes, and maintain its classification behavior. To this end, we propose a closeness metric between Bayesian classifiers, called the expected classification agreement (ECA). Our corresponding trimming algorithm finds an optimal subset of features and a new classification threshold that maximize the expected agreement, subject to a budgetary constraint. It utilizes new theoretical insights to perform branch-and-bound search in the space of feature sets, while computing bounds on the ECA. Our experiments investigate both the runtime cost of trimming and its effect on the robustness and accuracy of the final classifier.
引用
收藏
页码:5002 / 5009
页数:8
相关论文
共 50 条
  • [21] Stochastic optimization for bayesian network classifiers
    Yi Ren
    LiMin Wang
    XiongFei Li
    Meng Pang
    JunYang Wei
    Applied Intelligence, 2022, 52 : 15496 - 15516
  • [22] Using Bayesian network for combining classifiers
    De Stefano, Claudio
    D'Elia, Ciro
    Marcelli, Angelo
    di Freca, Alessandra Scotto
    14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, : 73 - +
  • [23] Discriminative learning of Bayesian network classifiers
    Pernkopf, Franz
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2007, : 422 - 427
  • [24] Bayesian Model Averaging of Bayesian Network Classifiers for Intrusion Detection
    Xiao, Liyuan
    Chen, Yetian
    Chang, Carl K.
    2014 38TH ANNUAL IEEE INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSACW 2014), 2014, : 128 - 133
  • [25] Design of robust neural network classifiers
    Larsen, J
    Andersen, LN
    Hintz-Madsen, M
    Hansen, LK
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1205 - 1208
  • [26] Mixed Bayesian Stackelberg Strategies for Robust Adversarial Classifiers
    Quadri, Hakeem
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2025, 12 (01):
  • [27] Efficient parameter learning of Bayesian network classifiers
    Nayyar A. Zaidi
    Geoffrey I. Webb
    Mark J. Carman
    François Petitjean
    Wray Buntine
    Mike Hynes
    Hans De Sterck
    Machine Learning, 2017, 106 : 1289 - 1329
  • [28] Decision Boundary for Discrete Bayesian Network Classifiers
    Varando, Gherardo
    Bielza, Concha
    Larranaga, Pedro
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 2725 - 2749
  • [29] Bayesian network classifiers for mineral potential mapping
    Porwal, A
    Carranza, EJM
    Hale, M
    COMPUTERS & GEOSCIENCES, 2006, 32 (01) : 1 - 16
  • [30] A Symbolic Approach to Explaining Bayesian Network Classifiers
    Shih, Andy
    Choi, Arthur
    Darwiche, Adnan
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5103 - 5111