Renormalization group theory for fluids including critical region. I. Pure fluids

被引:16
|
作者
Mi, JG
Zhong, CL
Li, YG
Chen, J
机构
[1] Beijing Univ Chem Technol, Key Lab Nanomat, Minist Educ, Dept Chem Engn, Beijing 100029, Peoples R China
[2] Tsing Hua Univ, State Key Lab Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
renormalization group theory; critical region; pure fluid;
D O I
10.1016/j.chemphys.2004.06.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on White's renormalization group (RG) theory and the statistical associating fluid theory, a new equation of state (EOS) is derived, which can be used for a variety of fluids, including non-polar, polar and associating chain fluids both inside and outside the critical region. The new EOS, with the advantage of not introducing any additional adjustable parameter to the RG transform for real fluids, yields satisfactory critical exponent, vapor-liquid coexistence densities and vapor pressures, pVT isotherms, and isobaric specific heats for pure fluids. Especially, much better results are obtained than the original EOS in the nearest vicinity of the critical point. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [41] THEORY OF CRITICAL PHENOMENA IN FLUIDS
    REATTO, L
    MERONI, A
    PAROLA, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 : SA121 - SA125
  • [42] NATURAL CONVECTIVE HEAT-TRANSFER IN THE NEAR CRITICAL REGION OF PURE FLUIDS
    STEPHAN, K
    DURST, M
    WINDISCH, R
    WARME UND STOFFUBERTRAGUNG-THERMO AND FLUID DYNAMICS, 1985, 19 (03): : 187 - 194
  • [43] APPLICATIONS OF AUGMENTED VANDERWAALS THEORY OF FLUIDS .1. PURE FLUIDS
    CHEN, SS
    KREGLEWSKI, A
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1977, 81 (10): : 1048 - 1052
  • [44] Description of phase behavior for pure fluids near the critical region by scaling law
    Zhong, Chongli
    Wang, Wenchuan
    Beijing Huagong Xueyuan Xuebao(Ziran Kexueban)/Journal of Beijing Institute of Chemical Technology, 1994, 21 (01):
  • [45] Renormalization-group corrections to an approximate free-energy model for simple fluids near to and far from the critical region
    Lue, L
    Prausnitz, JM
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5529 - 5536
  • [46] Non-perturbative renormalization group for simple fluids
    Caillol, Jean-Michel
    MOLECULAR PHYSICS, 2006, 104 (12) : 1931 - 1950
  • [47] Adiabatic Processes in the Liquid-Vapor Two-Phase Region. 1. Pure Fluids
    Imre, Attila R.
    Quinones-Cisneros, Sergio E.
    Deiters, Ulrich K.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (34) : 13529 - 13542
  • [48] Time evolution of density fluctuation in supercritical region. I. Non-hydrogen-bonded fluids studied by dynamic light scattering
    Saitow, KI
    Kajiya, D
    Nishikawa, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (01): : 83 - 91
  • [49] Viscosity of pure liquids. I. Non-polymerised fluids.
    Barrer, RM
    TRANSACTIONS OF THE FARADAY SOCIETY, 1943, 39 : 0048 - 0058
  • [50] Equation of state for pure fluids at critical temperature
    S. B. Khasare
    Chinese Physics B, 2012, 21 (04) : 382 - 386