Renormalization group theory for fluids including critical region. I. Pure fluids

被引:16
|
作者
Mi, JG
Zhong, CL
Li, YG
Chen, J
机构
[1] Beijing Univ Chem Technol, Key Lab Nanomat, Minist Educ, Dept Chem Engn, Beijing 100029, Peoples R China
[2] Tsing Hua Univ, State Key Lab Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
renormalization group theory; critical region; pure fluid;
D O I
10.1016/j.chemphys.2004.06.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on White's renormalization group (RG) theory and the statistical associating fluid theory, a new equation of state (EOS) is derived, which can be used for a variety of fluids, including non-polar, polar and associating chain fluids both inside and outside the critical region. The new EOS, with the advantage of not introducing any additional adjustable parameter to the RG transform for real fluids, yields satisfactory critical exponent, vapor-liquid coexistence densities and vapor pressures, pVT isotherms, and isobaric specific heats for pure fluids. Especially, much better results are obtained than the original EOS in the nearest vicinity of the critical point. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [21] VOLUMETRIC PROPERTIES OF FLUIDS CALCULATED BY RENORMALIZATION-GROUP THEORY
    WHITE, JA
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1995, 16 (02) : 465 - 472
  • [22] Guidelines for publication of equations of state - I. Pure fluids
    Deiters, UK
    De Reuck, KM
    FLUID PHASE EQUILIBRIA, 1999, 161 (01) : 206 - 219
  • [23] GRAVITY AND CRITICAL PURE FLUIDS, MATERIALS AND SUPERCRITICAL FLUIDS
    GARRABOS, Y
    LENEINDRE, B
    SUBRA, P
    CANSELL, F
    POMMIER, C
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 1992, 17 (01): : 55 - 90
  • [24] Density Functional Theory Integrated with Renormalization Group Theory for Criticality of Nanoconfined Fluids
    Zeng, Ming
    Mi, Jianguo
    Zhong, Chongli
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (11): : 3894 - 3901
  • [25] ELEMENTARY MOLECULAR THEORY OF CLASSICAL FLUIDS - PURE FLUIDS
    SANCHEZ, IC
    LACOMBE, RH
    JOURNAL OF PHYSICAL CHEMISTRY, 1976, 80 (21): : 2352 - 2362
  • [26] An extended equation of state modeling method - I. Pure fluids
    Scalabrin, G.
    Bettio, L.
    Marchi, P.
    Piazza, L.
    Richon, D.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2006, 27 (05) : 1281 - 1318
  • [27] A new molecular model for fluids - Part I. Pure substances
    Ibrahim, Badreldin
    FLUID PHASE EQUILIBRIA, 2008, 268 (1-2) : 100 - 108
  • [28] An Extended Equation of State Modeling Method I. Pure Fluids
    G. Scalabrin
    L. Bettio
    P. Marchi
    L. Piazza
    D. Richon
    International Journal of Thermophysics, 2006, 27 : 1281 - 1318
  • [29] The use of statistical associating fluid theory to improve the BACK equation of state I. Pure fluids
    Zhang, ZY
    Yang, JC
    Li, YG
    FLUID PHASE EQUILIBRIA, 2000, 172 (02) : 111 - 127
  • [30] Liquid-state theory and the renormalization group reconciled: A theory of phase transitions in fluids
    Reatto, L
    Parola, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (47) : 9221 - 9231