A STOCHASTIC BURGERS EQUATION FROM A CLASS OF MICROSCOPIC INTERACTIONS

被引:43
|
作者
Goncalves, Patricia [1 ,2 ]
Jara, Milton [3 ]
Sethuraman, Sunder [4 ]
机构
[1] UC RIO, Dept Matemat, BR-22453900 Rio De Janeiro, Brazil
[2] Univ Minho, Ctr Matemat, P-4710057 Braga, Portugal
[3] IMPA, Rio De Janeiro, Brazil
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
ANNALS OF PROBABILITY | 2015年 / 43卷 / 01期
关键词
KPZ equation; Burgers; weakly asymetric; zero-range; kinetically constrained; speed-change; fluctuations; ASYMMETRIC SIMPLE EXCLUSION; CENTRAL-LIMIT-THEOREM; ZERO-RANGE PROCESS; SYMMETRIC SIMPLE EXCLUSION; PARTICLE-SYSTEMS; SPECTRAL GAP; EQUILIBRIUM FLUCTUATIONS; TAGGED PARTICLE; KPZ EQUATION; GROWTH-MODEL;
D O I
10.1214/13-AOP878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on Z, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order O (n(-gamma)) for 1/2 < gamma <= 1, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when gamma = 1/2, we show that all limit points satisfy a martingale formulation which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp "Boltzmann-Gibbs" estimate which improves on earlier bounds.
引用
收藏
页码:286 / 338
页数:53
相关论文
共 50 条
  • [21] On the Approximation of the Stochastic Burgers Equation
    Christoph Gugg
    Hansjörg Kielhöfer
    Michael Niggemann
    Communications in Mathematical Physics, 2002, 230 : 181 - 199
  • [22] THE STOCHASTIC BURGERS-EQUATION
    BERTINI, L
    CANCRINI, N
    JONALASINIO, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) : 211 - 232
  • [23] On Energy Solutions to Stochastic Burgers Equation
    Goncalves, Patricia
    Occelli, Alessandra
    MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (04) : 523 - 556
  • [24] Strong solution of the stochastic Burgers equation
    Catuogno, P.
    Olivera, C.
    APPLICABLE ANALYSIS, 2014, 93 (03) : 646 - 652
  • [25] On the Solution of Stochastic Generalized Burgers Equation
    Dib, Nidal
    Guesmia, Amar
    Daili, Noureddine
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 521 - 528
  • [26] Estimate for PtD for the stochastic Burgers equation
    Da Prato, Giuseppe
    Debussche, Arnaud
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1248 - 1258
  • [27] Asymptotics of stochastic Burgers equation with jumps
    Hu, Shulan
    Wang, Ran
    STATISTICS & PROBABILITY LETTERS, 2020, 162
  • [28] GALERKIN APPROXIMATIONS FOR THE STOCHASTIC BURGERS EQUATION
    Bloemker, Dirk
    Jentzen, Arnulf
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 694 - 715
  • [29] ON THE STOCHASTIC BURGERS EQUATION WITH MOVING BOUNDARY
    Suarez, Pablo
    Chowdhury, Abhinandan
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (5-6): : 466 - 475
  • [30] The Burgers equation driven by a stochastic measure
    Radchenko, Vadym
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2023, 10 (03): : 229 - 246