Strong solution of the stochastic Burgers equation

被引:13
|
作者
Catuogno, P. [1 ]
Olivera, C. [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
generalized stochastic processes; generalized functions; stochastic partial differential equations; stochastic Burgers equation; Colombeau algebras; HEAT-EQUATION;
D O I
10.1080/00036811.2013.797074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work introduces a pathwise notion of solution for the stochastic Burgers equation, in particular, our approach encompasses the Cole-Hopf solution. The developments are based on regularization arguments from the theory of distributions.
引用
收藏
页码:646 / 652
页数:7
相关论文
共 50 条
  • [1] On the Solution of Stochastic Generalized Burgers Equation
    Dib, Nidal
    Guesmia, Amar
    Daili, Noureddine
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 521 - 528
  • [2] Absolute continuity of the solution to the stochastic Burgers equation
    Olivera, Christian
    Tudor, Ciprian A.
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [3] Convergence of finite element solution of stochastic Burgers equation
    Lv, Jingyun
    Lu, Xiaoyan
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 1663 - 1691
  • [4] An approximate solution for stochastic Burgers' equation driven by white noise
    Uma, D.
    Jafari, H.
    Balachandar, S. Raja
    Venkatesh, S. G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (07):
  • [5] An approximate solution for stochastic Burgers’ equation driven by white noise
    D. Uma
    H. Jafari
    S. Raja Balachandar
    S. G. Venkatesh
    Computational and Applied Mathematics, 2022, 41
  • [7] Stochastic stability of Burgers equation
    Yan Zheng
    Acta Mathematica Sinica, English Series, 2016, 32 : 1509 - 1514
  • [8] Stochastic Stability of Burgers Equation
    Yan ZHENG
    Acta Mathematica Sinica, 2016, 32 (12) : 1509 - 1514
  • [9] Stochastic Stability of Burgers Equation
    Yan ZHENG
    Acta Mathematica Sinica,English Series, 2016, (12) : 1509 - 1514
  • [10] Multifractality in the stochastic Burgers equation
    Hayot, F
    Jayaprakash, C
    PHYSICAL REVIEW E, 1996, 54 (05): : 4681 - 4684