Effects of steel fiber on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading

被引:32
|
作者
Li, Zongze [1 ]
Zhu, Haitang [1 ,2 ]
Zhen, Xuanjiao [1 ]
Wen, Chengcheng [1 ]
Chen, Gang [2 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy Engn, Zhengzhou 450001, Peoples R China
[2] Henan Univ Engn, Sch Civil Engn, Zhengzhou 451191, Peoples R China
基金
中国国家自然科学基金;
关键词
SFRC beams; BFRP rebars; Flexural behavior; Ductility;
D O I
10.1016/j.compstruct.2021.114072
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study investigates the effects of concrete strength, steel fiber volume ratio, and steel fiber shapes on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading with the aims of exploring the feasibility of using short discrete steel fiber to improve the ductility of beams, and proposing appropriate methods for evaluating their ductility. A four-point bending test was carried out on four steel fiber reinforced concrete (SFRC) beams with BFRP rebars and one beam reinforced with BFRP rebars only without steel fibers. Experimental results are reported in terms of the failure mode, flexural strength, loaddeflection response, cracking behavior, and ductility, which reveals that the flexural strength of beams can be calculated using CSA S806-12 code method with an error of about 20%. Compared with ordinary concrete, the impact of steel fiber reinforcement on the service load of beams is more significant than that on their flexural strength; moreover, when steel fiber volume ratio increased from 0% to 1.0%, the deflection under service load decreased by 59.36%. In addition, the ductility of beam with 1.0% steel fiber volume ratio can be enhanced by 17% than that of concrete beam without steel fibers. Compared with energy ductility coefficient, displacement ductility coefficient, curvature ductility coefficient, the ductility coefficient of ACI 440.1R-15 prove to be more accurate in evaluating ductility of SFRC beams with BFRP rebars, and all the beams investigated in this study had a ductility factor greater than 4.0.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars
    Ge, Wenjie
    Zhang, Jiwen
    Cao, Dafu
    Tu, Yongming
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 87 : 28 - 37
  • [32] Flexural behavior of steel fiber reinforced concrete
    School of Civ. and Struct. Engrg., Nanyang Technol, Univ., Singapore 639798, Singapore
    不详
    不详
    J Mater Civ Eng, 2 (86-97):
  • [33] Tensile strength and flexural behavior of steel fiber-reinforced concrete beams
    Lolla, Srilakshmi
    Oinam, Romanbabu M.
    Furtado, A.
    Varum, H.
    STRUCTURAL CONCRETE, 2024,
  • [34] Flexural behavior of concrete beams reinforced with steel-BFRP composite bars subjected to chloride corrosion
    Ge W.
    Zhang S.
    Zhang Z.
    Ashraf A.
    Guan Z.
    Sun C.
    Cao D.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2023, 44 (08): : 170 - 184
  • [35] Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams
    Bafghi, Mohammad Ali Barkhordari
    Amini, Fereydon
    Nikoo, Hamed Safaye
    Sarkardeh, Hamed
    APPLIED SCIENCES-BASEL, 2017, 7 (10):
  • [36] Flexural behavior of steel fiber reinforced concrete
    Lok, TS
    Pei, JS
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 1998, 10 (02) : 86 - 97
  • [37] INFLUENCE OF SHEAR FAILURE OF FLEXURAL FIBRE CONCRETE BEAMS REINFORCED WITH REBARS OF TWO DUCTILITY CLASSES
    Kratky, J.
    Hanzlova, H.
    Vodicka, J.
    Vaskova, J.
    Heran, R.
    FIBRE CONCRETE 2011: TECHNOLOGY, DESIGN, APPLICATION, 2011, : 177 - 185
  • [38] Research on the flexural behavior of BFRP Concrete Beams
    Huo, Baorong
    Yang, Guangning
    Zhang, Xiangdong
    ARCHITECTURE AND URBAN DEVELOPMENT, 2012, 598 : 351 - +
  • [39] Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading
    Chien, Li-Kai
    Kuo, Yi-Hao
    Huang, Chung-Ho
    Chen, How-Ji
    Cheng, Ping-Hu
    STRUCTURAL ENGINEERING AND MECHANICS, 2014, 52 (03) : 559 - 572
  • [40] Behavior of Lightweight Aggregate Wide Reinforced Concrete Beams with Shear Steel Plates Under Repeated Loading
    Abd-Ai-Ghafoor, Lubna
    Harba, Ibrahim S. I.
    CIVIL AND ENVIRONMENTAL ENGINEERING, 2024, 20 (01) : 555 - 570