Effects of steel fiber on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading

被引:32
|
作者
Li, Zongze [1 ]
Zhu, Haitang [1 ,2 ]
Zhen, Xuanjiao [1 ]
Wen, Chengcheng [1 ]
Chen, Gang [2 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy Engn, Zhengzhou 450001, Peoples R China
[2] Henan Univ Engn, Sch Civil Engn, Zhengzhou 451191, Peoples R China
基金
中国国家自然科学基金;
关键词
SFRC beams; BFRP rebars; Flexural behavior; Ductility;
D O I
10.1016/j.compstruct.2021.114072
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study investigates the effects of concrete strength, steel fiber volume ratio, and steel fiber shapes on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading with the aims of exploring the feasibility of using short discrete steel fiber to improve the ductility of beams, and proposing appropriate methods for evaluating their ductility. A four-point bending test was carried out on four steel fiber reinforced concrete (SFRC) beams with BFRP rebars and one beam reinforced with BFRP rebars only without steel fibers. Experimental results are reported in terms of the failure mode, flexural strength, loaddeflection response, cracking behavior, and ductility, which reveals that the flexural strength of beams can be calculated using CSA S806-12 code method with an error of about 20%. Compared with ordinary concrete, the impact of steel fiber reinforcement on the service load of beams is more significant than that on their flexural strength; moreover, when steel fiber volume ratio increased from 0% to 1.0%, the deflection under service load decreased by 59.36%. In addition, the ductility of beam with 1.0% steel fiber volume ratio can be enhanced by 17% than that of concrete beam without steel fibers. Compared with energy ductility coefficient, displacement ductility coefficient, curvature ductility coefficient, the ductility coefficient of ACI 440.1R-15 prove to be more accurate in evaluating ductility of SFRC beams with BFRP rebars, and all the beams investigated in this study had a ductility factor greater than 4.0.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Flexural behavior of lightly and heavily reinforced steel fiber concrete beams
    Mertol, Halit Cenan
    Baran, Eray
    Bello, Hussain Jibril
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 98 : 185 - 193
  • [22] Simulation of Flexural Behavior of Reinforced Concrete Beams under Impact loading
    Rouchette, Arnaud
    Zhang, Weiping
    Chen, Hui
    ADVANCES IN CIVIL STRUCTURES, PTS 1 AND 2, 2013, 351-352 : 1018 - 1023
  • [23] Flexural Behavior of Reinforced Concrete Beams with Various Layers of Conventional and Steel Fiber Reinforced Concrete
    Mertol, Halit Cenan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (01): : 273 - 280
  • [24] Self-compacting concrete beams reinforced with steel fiber under flexural loads: A ductility index evaluation
    Odaa, Sief Aldeen
    Hason, Mahir M.
    Sharba, Amjad Ali K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 2259 - 2267
  • [25] Flexural Ductility Behavior of Strengthened Reinforced Concrete Beams Using Steel and CFRP Plates
    Bsisu, Khair Al-Deen
    Hunaiti, Yasser
    Younes, Raja
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2012, 6 (03) : 304 - 312
  • [26] Steel Fiber Reinforced Concrete Fatigue Life Under Flexural Loading
    Monteiro, Vitor
    Iranildo, Silva Junior
    Daniel, Cardoso
    Silva, Flavio de Andrade
    TRANSFORMING CONSTRUCTION: ADVANCES IN FIBER REINFORCED CONCRETE, BEFIB 2024, 2024, 54 : 381 - 389
  • [27] An enhanced approach to assess the reduction of flexural ductility of reinforced/steel fiber reinforced concrete beams and slabs
    Gebreyesus, Yosef Y.
    Karinski, Yuri S.
    Dancygier, Avraham N.
    INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2024,
  • [28] Prediction models of flexural behavior of concrete beams reinforced with FRP rebars
    He, Zheng
    Wang, Bo
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2007, 39 (12): : 1849 - 1853
  • [29] Flexural behavior of concrete beams reinforced with glass fiber reinforced polymer and steel bars
    Farias, Cristian Espindola
    Pessi, Sarah Lodeti
    Wanderlind, Augusto
    Piva, Jorge Henrique
    Antunes, Elaine Guglielmi Pavei
    REVISTA DE LA CONSTRUCCION, 2022, 21 (03): : 506 - 522
  • [30] Cracking behavior of geopolymer concrete beams reinforced with steel and fiber reinforced polymer bars under flexural load
    Rashid, Khuram
    Li, Xiaoda
    Xie, Yan
    Deng, Jun
    Zhang, Faji
    COMPOSITES PART B-ENGINEERING, 2020, 186