Benchmarking Electrolyte-Gated Monolayer MoS2 Field-Effect Transistors in Aqueous Environments

被引:5
|
作者
Ruehl, Steffen [1 ,2 ]
Heyl, Max [1 ,2 ]
Gaerisch, Fabian [1 ,2 ]
Blumstengel, Sylke [1 ,2 ]
Ligorio, Giovanni [1 ,2 ]
List-Kratochvil, Emil J. W. [1 ,2 ,3 ]
机构
[1] Humboldt Univ, Dept Chem, Dept Phys, Zum Grossen Windkanal 2, D-12489 Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, Zum Grossen Windkanal 2, D-12489 Berlin, Germany
[3] Helmholtz Zentrum Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany
来源
关键词
electrolyte gated transistors; MoS2; sensor applications; transition metal dichalcogenides; water; LAYER MOS2; DEVICES;
D O I
10.1002/pssr.202100147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most electrical sensor and biosensor elements require reliable transducing elements to convert small potential changes into easy to read out current signals. Offering inherent signal magnification and being operable in many relevant environments field-effect transistors (FETs) are the element of choice in many cases. In particular, using electrolyte gating, numerous sensors and biosensors have been realized in aqueous environments. Over the past years, electrolyte-gated FETs have been fabricated using a variety of semiconducting materials, including graphene, ZnO, as well as conjugated molecules and polymers. Above all, using conducting polymers top-performing devices have been achieved. Herein, an approach to use a transition metal dichalcogenide (TMDC)-based monolayer device as a transducing element is presented. Using MoS2 monolayers, it is shown that such electrolyte-gated devices may be regarded as very promising transducing elements for sensor and biosensor applications, enabled by their high sensitivity for environmental changes and the possibility of using the naturally occurring sulfur vacancies as grafting points of biorecognition layers. Furthermore, the behavior of such a device under prolonged operation in a dilute biologically relevant electrolyte such as phosphate buffered saline solution (PBS) is reported.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Graphene-Based Electrolyte-Gated Field-Effect Transistors for Potentiometrically Sensing Neuropeptide Y in Physiologically Relevant Environments
    Islam, Ahmad E.
    Martineau, Rhett
    Crasto, Cameron M.
    Kim, Hyunil
    Rao, Rahul S.
    Maruyama, Benji
    Kim, Steve S.
    Drummy, Lawrence F.
    ACS APPLIED NANO MATERIALS, 2020, 3 (06): : 5088 - 5097
  • [42] Hydrogen Plasma Exposure of Monolayer MoS2 Field-Effect Transistors and Prevention of Desulfurization by Monolayer Graphene
    Soman, Anishkumar
    Burke, Robert A.
    Li, Qiu
    Valentin, Michael D.
    Li, Tiantian
    Mao, Dun
    Dubey, Madan
    Gu, Tingyi
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (33) : 37305 - 37312
  • [43] Transient analysis of electrolyte-gated organic field effect transistors
    Tu, Deyu
    Kergoat, Loig
    Crispin, Xavier
    Berggren, Magnus
    Forchheimer, Robert
    ORGANIC FIELD-EFFECT TRANSISTORS XI, 2012, 8478
  • [44] An Electrolyte-Gated Graphene Field-Effect Transistor for Detection of Gadolinium(III) in Aqueous Media
    Gadroy, Charlene
    Boukraa, Rassen
    Battaglini, Nicolas
    Le Derf, Franck
    Mofaddel, Nadine
    Vieillard, Julien
    Piro, Benoit
    BIOSENSORS-BASEL, 2023, 13 (03):
  • [45] Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors
    Mackin, Charles
    Palacios, Tomas
    ANALYST, 2016, 141 (09) : 2704 - 2711
  • [46] Electrochemical Stability Investigations and Drug Toxicity Tests of Electrolyte-Gated Organic Field-Effect Transistors
    Zhang, Yu
    Zeng, Qiming
    Shen, Yujie
    Yang, Li
    Yu, Fei
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 56216 - 56221
  • [47] Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes
    Simatos, Dimitrios
    Nikolka, Mark
    Charmet, Jerome
    Spalek, Leszek J.
    Toprakcioglu, Zenon
    Jacobs, Ian E.
    Dimov, Ivan B.
    Schweicher, Guillaume
    Lee, Mi Jung
    Fernandez-Posada, Carmen M.
    Howe, Duncan J.
    Hakala, Tuuli A.
    Roode, Lianne W. Y.
    Pecunia, Vincenzo
    Sharp, Thomas P.
    Zhang, Weimin
    Alsufyani, Maryam
    McCulloch, Iain
    Knowles, Tuomas P. J.
    Sirringhaus, Henning
    SMARTMAT, 2024, 5 (06):
  • [48] Ferroelectric Polarization Induces Electric Double Layer Bistability in Electrolyte-Gated Field-Effect Transistors
    Fabiano, Simone
    Crispin, Xavier
    Berggren, Magnus
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) : 438 - 442
  • [49] Low contact resistance in solid electrolyte-gated ZnO field-effect transistors with ferromagnetic contacts
    Hu, Xiaotao
    Sun, Jia
    Qian, Chuan
    Liu, Fangmei
    Yang, Junliang
    Guo, Guang-hua
    Gao, Yongli
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (01) : 150 - 156
  • [50] Ultrascaled Contacts to Monolayer MoS2 Field Effect Transistors
    Schranghamer, Thomas F.
    Sakib, Najam U.
    Sadaf, Muhtasim Ul Karim
    Radhakrishnan, Shiva Subbulakshmi
    Pendurthi, Rahul
    Agyapong, Ama Duffle
    Stepanoff, Sergei P.
    Torsi, Riccardo
    Chen, Chen
    Redwing, Joan M.
    Robinson, Joshua A.
    Wolfe, Douglas E.
    Mohney, Suzanne E.
    Das, Saptarshi
    NANO LETTERS, 2023, 23 (08) : 3426 - 3434