Impulsive noise filtering using a Median Redescending M-Estimator

被引:4
|
作者
Mujica-Vargas, Dante [1 ]
Gallegos-Funes, Francisco J. [2 ]
de Jesus Rubio, Jose [3 ]
Pacheco, Jaime [3 ]
机构
[1] CENIDET, Dept Comp Sci, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Natl Polytech Inst Mexico, Mech & Elect Engn Higher Sch, Ciudad De Mexico, Mexico
[3] Inst Politecn Nacl, ESIME Azcapotzalco, Secc Estudios Posgrad & Invest, Ciudad De Mexico, Mexico
关键词
Salt and Pepper noise; noise suppression; grayscale images; Redescending M-Estimator; Median-Estimator; DIGITAL IMAGES; PEPPER NOISE; REMOVAL; SALT;
D O I
10.3233/IDA-170885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salt and Pepper noise removal is an important image preprocessing task, it has two simultaneous demands: the suppression of impulses and the preservation of edges. To address this problem in gray scale images, we propose an efficient method which consists of introducing a Redescending M-Estimator within of the Median-Estimator scheme. The Redescending M- Estimator controls the magnitude of the Salt or Pepper impulses and deletes them when it is necessary; the remaining pixels in the neighborhood are processed by the Median-Estimator in order to obtain an estimation of a noise free pixel. The proposed scheme is applied on the entire image using sliding windows of size 5 x 5; the local information obtained by this window is used to calculate the thresholds and the parameters that characterize the influence functions tested in the Redescending MEstimator. To improve the suppression ability of our proposal a pulse detector is used, it identifies when is necessary to submit each pixel to the denoising process. The effectiveness of our proposal is verified by quantitative and qualitative results.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [31] Local M-estimator for nonparametric time series
    Cai, ZW
    Ould-Saïd, E
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (04) : 433 - 449
  • [32] When the mean fails, use an M-estimator
    Cajal, Berta
    Gervilla, Elena
    Palmer, Alfonso
    ANALES DE PSICOLOGIA, 2012, 28 (01): : 281 - 288
  • [33] Fitting data with errors in all variables using the Huber M-estimator
    Hermey, D
    Watson, GA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04): : 1276 - 1298
  • [34] Robustness of the student t based M-estimator
    Lucas, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (05) : 1165 - 1182
  • [35] An M-estimator for the long-memory parameter
    Reisen, V. A.
    Levy-Leduc, C.
    Taqqu, M. S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 187 : 44 - 55
  • [36] Robust local polynomial regression using M-estimator with adaptive bandwidth
    Chan, SC
    Zhang, ZG
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3, PROCEEDINGS, 2004, : 333 - 336
  • [37] Image Registration Using Feature Points, Zernike Moments and an M-estimator
    Gillan, Steven
    Agathoklis, Pan
    53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 434 - 437
  • [38] Sensor Fault Accommodation for a Plug Flow Reactor using an M-Estimator
    Seth, Gaurav
    Rangegowda, Pavanraj H.
    Patwardhan, Sachin C.
    Bhushan, Mani
    IFAC PAPERSONLINE, 2022, 55 (07): : 738 - 743
  • [39] Duality in robust linear regression using Huber's M-estimator
    Pinar, MC
    APPLIED MATHEMATICS LETTERS, 1997, 10 (04) : 65 - 70
  • [40] A robust approach to discard feature outliers using M-estimator method
    Li, XW
    Liu, Y
    Wang, YT
    Zheng, W
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 2, 2004, : 265 - 268