Impulsive noise filtering using a Median Redescending M-Estimator

被引:4
|
作者
Mujica-Vargas, Dante [1 ]
Gallegos-Funes, Francisco J. [2 ]
de Jesus Rubio, Jose [3 ]
Pacheco, Jaime [3 ]
机构
[1] CENIDET, Dept Comp Sci, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Natl Polytech Inst Mexico, Mech & Elect Engn Higher Sch, Ciudad De Mexico, Mexico
[3] Inst Politecn Nacl, ESIME Azcapotzalco, Secc Estudios Posgrad & Invest, Ciudad De Mexico, Mexico
关键词
Salt and Pepper noise; noise suppression; grayscale images; Redescending M-Estimator; Median-Estimator; DIGITAL IMAGES; PEPPER NOISE; REMOVAL; SALT;
D O I
10.3233/IDA-170885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salt and Pepper noise removal is an important image preprocessing task, it has two simultaneous demands: the suppression of impulses and the preservation of edges. To address this problem in gray scale images, we propose an efficient method which consists of introducing a Redescending M-Estimator within of the Median-Estimator scheme. The Redescending M- Estimator controls the magnitude of the Salt or Pepper impulses and deletes them when it is necessary; the remaining pixels in the neighborhood are processed by the Median-Estimator in order to obtain an estimation of a noise free pixel. The proposed scheme is applied on the entire image using sliding windows of size 5 x 5; the local information obtained by this window is used to calculate the thresholds and the parameters that characterize the influence functions tested in the Redescending MEstimator. To improve the suppression ability of our proposal a pulse detector is used, it identifies when is necessary to submit each pixel to the denoising process. The effectiveness of our proposal is verified by quantitative and qualitative results.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [21] A Novel M-Estimator for Robust PCA
    Zhang, Teng
    Lerman, Gilad
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 749 - 808
  • [22] Reconstructing the Kaplan-Meier Estimator as an M-estimator
    Gu, Jiaqi
    Fan, Yiwei
    Yin, Guosheng
    AMERICAN STATISTICIAN, 2022, 76 (01): : 37 - 43
  • [23] Robust Liu estimator for regression based on an M-estimator
    Arslan, O
    Billor, N
    JOURNAL OF APPLIED STATISTICS, 2000, 27 (01) : 39 - 47
  • [24] A novel M-estimator for robust PCA
    Zhang, Teng
    Lerman, Gilad
    Journal of Machine Learning Research, 2014, 15 : 749 - 808
  • [25] A Modified M-estimator for the Detection of Outliers
    Ali, Asad
    Qadir, Muhammad F.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2005, 1 (01) : 49 - 64
  • [26] An M-estimator of spatial tail dependence
    Einmahl, John H. J.
    Kiriliouk, Anna
    Krajina, Andrea
    Segers, Johan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 275 - 298
  • [27] DOA Estimation Under Strong Impulsive Noise Based on Median Value Filtering
    An C.-L.
    Yang G.-Y.
    Yang Y.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (06): : 1159 - 1166
  • [28] Robust global motion estimation using a simplified M-estimator approach
    Smolic, A
    Ohm, JR
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 868 - 871
  • [29] The linear e1 estimator and the Huber m-estimator
    Li, W
    Swetits, JJ
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) : 457 - 475
  • [30] Comparison of Redescending and Monotone M Estimator For Surface Roughness Estimation Using Machine Vision
    Chauhan, Jayesh D.
    Modi, Chintan K.
    Pithadiya, Kunal J.
    2009 SECOND INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY (ICETET 2009), 2009, : 586 - 591