ON A NONSTANDARD VOLTERRA TYPE DYNAMIC INTEGRAL EQUATION ON TIME SCALES

被引:0
|
作者
Pachpatte, Deepak B. [1 ]
机构
[1] Dr BAM Univ, Dept Math, Aurangabad 431004, Maharashtra, India
关键词
Integral equations; time scales; qualitative properties; Banach fixed point theorem; explicit estimates; existence and uniqueness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of the present paper is to study some basic qualitative properties of solutions of a nonstandard Volterra type dynamic integral equation on time scales. The tools employed in the analysis are based on the applications of the Banach fixed point theorem and a certain integral inequality with explicit estimate on time scales.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] Analysis of collocation solutions for nonstandard Volterra integral equations
    Guan, Qingguang
    Zhang, Ran
    Zou, Yongkui
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1755 - 1785
  • [42] VOLTERRA INTEGRAL EQUATIONS GOVERNED BY HIGHLY OSCILLATORY FUNCTIONS ON TIME SCALES
    Satco, Bianca
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (03): : 233 - 240
  • [43] STOCHASTIC INTEGRAL EQUATION OF VOLTERRA TYPE IN TELEPHONE TRAFFIC THEORY
    PADGETT, WJ
    TSOKOS, CP
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01): : 418 - +
  • [44] Numerical solution of a nonlinear Abel type Volterra integral equation
    Diogo, T
    Lima, P
    Rebelo, M
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (02) : 277 - 288
  • [45] On monotonic solutions of an integral equation of Volterra-Stieltjes type
    Caballero, J
    Rocha, J
    Sadarangani, K
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) : 130 - 141
  • [46] Solution of a Singular Integral Equation of Volterra Type of the Second Kind
    M. I. Ramazanov
    N. K. Gulmanov
    S. S. Kopbalina
    M. T. Omarov
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5898 - 5906
  • [47] On the Solutions of a Delay Functional Integral Equation of Volterra–Stieltjes Type
    El-Sayed A.M.A.
    Omar Y.M.Y.
    International Journal of Applied and Computational Mathematics, 2020, 6 (1)
  • [48] Solvability of an Integral Equation of Volterra-Wiener-Hopf Type
    Ashirbayev, Nurgali K.
    Banas, Jozef
    Dubiel, Agnieszka
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [49] Dynamic integral inequalities on time scales with 'maxima'
    Tariboon, Jessada
    Thiramanus, Phollakrit
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [50] STOCHASTIC INTEGRAL EQUATION OF VOLTERRA TYPE IN TELEPHONE TRAFFIC THEORY
    PADGETT, WJ
    TSOKOS, CP
    JOURNAL OF APPLIED PROBABILITY, 1971, 8 (02) : 269 - &