ON A NONSTANDARD VOLTERRA TYPE DYNAMIC INTEGRAL EQUATION ON TIME SCALES

被引:0
|
作者
Pachpatte, Deepak B. [1 ]
机构
[1] Dr BAM Univ, Dept Math, Aurangabad 431004, Maharashtra, India
关键词
Integral equations; time scales; qualitative properties; Banach fixed point theorem; explicit estimates; existence and uniqueness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of the present paper is to study some basic qualitative properties of solutions of a nonstandard Volterra type dynamic integral equation on time scales. The tools employed in the analysis are based on the applications of the Banach fixed point theorem and a certain integral inequality with explicit estimate on time scales.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Existence of Solutions for a Class of Volterra Integral Equations on Time Scales
    Ramadan, Wafaa Salih
    Georgiev, Svetlin G.
    Al-Hayani, Waleed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6647 - 6653
  • [32] Monotonic solutions of a quadratic integral equation of Volterra type
    Banas, J
    Martinon, A
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (2-3) : 271 - 279
  • [33] On monotonic solutions of an integral equation of Volterra type with supremum
    Caballero, J
    López, B
    Sadarangani, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (01) : 304 - 315
  • [34] MIXED TYPE OF FREDHOLM-VOLTERRA INTEGRAL EQUATION
    Abdou, M. A.
    Abd Al-Kader, G. M.
    MATEMATICHE, 2005, 60 (01): : 41 - 58
  • [35] NONDECREASING SOLUTIONS OF A QUADRATIC INTEGRAL EQUATION OF VOLTERRA TYPE
    Zhu, Tao
    Song, Chao
    Li, Gang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05): : 1715 - 1725
  • [36] On a volterra integral equation
    Rajabov, N
    DOKLADY MATHEMATICS, 2002, 65 (02) : 217 - 220
  • [37] Periodic boundary value problems of integro-differential equation of Volterra type on time scales
    Xing, Yepeng
    Ding, Wei
    Han, Maoan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) : 127 - 138
  • [38] Triple positive solutions for an impulsive dynamic equation with integral boundary condition on time scales
    Hu, Meng
    Wang, Lili
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 31 (01): : 67 - 78
  • [39] Triple positive solutions for an impulsive dynamic equation with integral boundary condition on time scales
    Hu, Meng
    Wang, Lili
    International Journal of Applied Mathematics and Statistics, 2013, 31 (01): : 67 - 78
  • [40] Oscillation of Dynamic Equation on Time Scales
    Yan, Xin Zhou
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2104 - 2107