Tunnelling percolation: universality and application to the integer quantum Hall effect

被引:2
|
作者
Hansen, A [1 ]
Kertesz, J
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, N-7034 Trondheim, Norway
[2] Tech Univ Budapest, Inst Phys, Dept Theoret Phys, H-1111 Budapest, Hungary
关键词
D O I
10.1080/13642819808205023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The critical phenomena in the integer quantum Hall effect (IQHE) occurring at half-filling of the Landau levels have been related to classical percolation with the additional quantum effects of tunnelling and interference. Experimental results show that the correlation length exponent upsilon(H) is larger than the classical percolation exponent upsilon(p) roughly by unity. Earlier numerical solutions of the model of the full problem, the Chalker-Coddington model, reproduced this value. By using a scaling argument, Mil'nikov and Sokolov suggested that tunnelling alone leads already to the result upsilon(H) = upsilon(p) + 1. We have shown by analytical arguments and numerical simulations that this is not the case; quantum tunnelling does not change the universality of classical percolation; thus the observed non-universal exponent should be attributed to interference phenomena. We also predict a cross-over in the IQHE from the quantum to the classical value of the exponent.
引用
收藏
页码:1301 / 1311
页数:11
相关论文
共 50 条
  • [41] Geometrical exponents in the integer quantum Hall effect
    Bratberg, I
    Hansen, A
    Hauge, EH
    EUROPHYSICS LETTERS, 1997, 37 (01): : 19 - 24
  • [42] Integer quantum Hall effect and correlated disorder
    A. A. Greshnov
    G. G. Zegrya
    Semiconductors, 2007, 41 : 1329 - 1334
  • [43] Integer quantum Hall effect and related phenomena
    Dolgopolov, V. T.
    PHYSICS-USPEKHI, 2014, 57 (02) : 105 - 127
  • [44] A discrete model of the integer quantum Hall effect
    McCann, PJ
    Carey, AL
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1996, 32 (01) : 117 - 156
  • [45] On the phase boundaries of the integer quantum hall effect
    S. S. Murzin
    JETP Letters, 2009, 89 : 298 - 300
  • [46] Theory of integer quantum Hall effect in graphene
    Herbut, Igor F.
    PHYSICAL REVIEW B, 2007, 75 (16):
  • [47] Integer Quantum Hall Effect in Trilayer Graphene
    Kumar, A.
    Escoffier, W.
    Poumirol, J. M.
    Faugeras, C.
    Arovas, D. P.
    Fogler, M. M.
    Guinea, F.
    Roche, S.
    Goiran, M.
    Raquet, B.
    PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [48] On the phase boundaries of the integer quantum hall effect
    Murzin, S. S.
    JETP LETTERS, 2009, 89 (06) : 298 - 300
  • [49] Unconventional integer quantum Hall effect in graphene
    Gusynin, VP
    Sharapov, SG
    PHYSICAL REVIEW LETTERS, 2005, 95 (14)
  • [50] New insight into the integer quantum Hall effect
    Srivastava, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (19-20): : 2783 - 2792