Tunnelling percolation: universality and application to the integer quantum Hall effect

被引:2
|
作者
Hansen, A [1 ]
Kertesz, J
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, N-7034 Trondheim, Norway
[2] Tech Univ Budapest, Inst Phys, Dept Theoret Phys, H-1111 Budapest, Hungary
关键词
D O I
10.1080/13642819808205023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The critical phenomena in the integer quantum Hall effect (IQHE) occurring at half-filling of the Landau levels have been related to classical percolation with the additional quantum effects of tunnelling and interference. Experimental results show that the correlation length exponent upsilon(H) is larger than the classical percolation exponent upsilon(p) roughly by unity. Earlier numerical solutions of the model of the full problem, the Chalker-Coddington model, reproduced this value. By using a scaling argument, Mil'nikov and Sokolov suggested that tunnelling alone leads already to the result upsilon(H) = upsilon(p) + 1. We have shown by analytical arguments and numerical simulations that this is not the case; quantum tunnelling does not change the universality of classical percolation; thus the observed non-universal exponent should be attributed to interference phenomena. We also predict a cross-over in the IQHE from the quantum to the classical value of the exponent.
引用
收藏
页码:1301 / 1311
页数:11
相关论文
共 50 条
  • [21] Integer Quantum Hall Effect on Abacus
    Int J Quant Chem, 1 (99):
  • [22] Integer Quantum Hall Effect for Bosons
    Senthil, T.
    Levin, Michael
    PHYSICAL REVIEW LETTERS, 2013, 110 (04)
  • [23] Optical Hall Effect in the Integer Quantum Hall Regime
    Ikebe, Y.
    Morimoto, T.
    Masutomi, R.
    Okamoto, T.
    Aoki, H.
    Shimano, R.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [24] UNIVERSALITY IN THE FRACTIONAL QUANTUM HALL-EFFECT
    FRADKIN, E
    LOPEZ, A
    NUCLEAR PHYSICS B, 1993, : 67 - 91
  • [25] Integer quantum Hall effect in a PbTe quantum well
    Chitta, V. A.
    Desrat, W.
    Maude, D. K.
    Piot, B. A.
    Oliveira, N. F., Jr.
    Rappl, P. H. O.
    Ueta, A. Y.
    Abramof, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 124 - 127
  • [26] A heuristic quantum theory of the integer quantum Hall effect
    Kramer, Tobias
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (10): : 1243 - 1260
  • [27] Effects of quantum deformation on the integer quantum Hall effect
    Andrade, Fabiano M.
    Silva, Edilberto O.
    Assafrao, Denise
    Filgueiras, Cleverson
    EPL, 2016, 116 (03)
  • [28] LOCALIZATION, PERCOLATION, AND THE QUANTUM HALL-EFFECT
    TRUGMAN, SA
    PHYSICAL REVIEW B, 1983, 27 (12): : 7539 - 7546
  • [29] Percolation under Quantum Hall Effect conditions
    Arkhincheev, Valeriy
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 235 - 236
  • [30] Introduction to the theory of the integer quantum Hall effect
    Doucot, Benoit
    COMPTES RENDUS PHYSIQUE, 2011, 12 (04) : 323 - 331