Order parameter for two-dimensional critical systems with boundaries

被引:15
|
作者
Res, I [1 ]
Straley, JP [1 ]
机构
[1] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
来源
PHYSICAL REVIEW B | 2000年 / 61卷 / 21期
关键词
D O I
10.1103/PhysRevB.61.14425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conformal transformations can be used to obtain the order parameter for two-dimensional systems at criticality in finite geometries with fixed boundary conditions on a connected boundary. To the known examples of this class (such as the disk and the infinite strip) we contribute the case of a rectangle. We show that the order parameter profile for simply connected boundaries can be represented as a universal function (independent of the criticality model) raised to the power 1/2 eta. The universal function can be determined from the Gaussian model or equivalently a problem in two-dimensional electrostatics. We show that fitting the order parameter profile to the theoretical form gives an accurate route to the determination of eta. We perform numerical simulations for the Ising model and percolation for comparison with these analytic predictions, and apply this approach to the study of the planar rotor model.
引用
收藏
页码:14425 / 14433
页数:9
相关论文
共 50 条
  • [41] Casimir terms and shape instabilities for two-dimensional critical systems
    Kleban, P
    Peschel, I
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 101 (03): : 447 - 453
  • [42] CRITICAL-BEHAVIOR OF TWO-DIMENSIONAL SYSTEMS WITH CONTINUOUS SYMMETRIES
    AFFLECK, I
    PHYSICAL REVIEW LETTERS, 1985, 55 (13) : 1355 - 1358
  • [44] Order parameter quantum fluctuations in a two-dimensional system of mesoscopic Josephson junctions
    A. I. Belousov
    S. A. Verzakov
    Yu. E. Lozovik
    Journal of Experimental and Theoretical Physics, 1998, 86 : 146 - 155
  • [45] Order parameter quantum fluctuations in a two-dimensional system of mesoscopic Josephson junctions
    Belousov, AI
    Verzakov, SA
    Lozovik, YE
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 86 (01) : 146 - 155
  • [46] Probing the order parameter symmetry of two-dimensional superconductors by twisted Josephson interferometry
    Xiao, Jiewen
    Vituri, Yaar
    Berg, Erez
    PHYSICAL REVIEW B, 2023, 108 (09)
  • [47] Relevance of soft modes for order parameter fluctuations in the two-dimensional XY model
    Portelli, B
    Holdsworth, PCW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (05): : 1231 - 1244
  • [48] Finding critical exponents and parameter space for a family of dissipative two-dimensional mappings
    da Costa, Fabio H.
    de Almeida, Mayla A. M.
    Medrano-T, Rene O.
    Leonel, Edson D.
    de Oliveira, Juliano A.
    CHAOS, 2024, 34 (12)
  • [49] Two-Dimensional Spatial Construction for Online Modeling of Distributed Parameter Systems
    Wei, Peng
    Li, Han-Xiong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (10) : 10227 - 10235
  • [50] SEGREGATION AND SHORT-RANGE ORDER PROPERTIES AT THE BOUNDARIES OF TWO-DIMENSIONAL BIMETALLIC CLUSTERS
    MORANLOPEZ, JL
    FALICOV, LM
    SURFACE SCIENCE, 1979, 79 (01) : 109 - 116