Order parameter for two-dimensional critical systems with boundaries

被引:15
|
作者
Res, I [1 ]
Straley, JP [1 ]
机构
[1] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
来源
PHYSICAL REVIEW B | 2000年 / 61卷 / 21期
关键词
D O I
10.1103/PhysRevB.61.14425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conformal transformations can be used to obtain the order parameter for two-dimensional systems at criticality in finite geometries with fixed boundary conditions on a connected boundary. To the known examples of this class (such as the disk and the infinite strip) we contribute the case of a rectangle. We show that the order parameter profile for simply connected boundaries can be represented as a universal function (independent of the criticality model) raised to the power 1/2 eta. The universal function can be determined from the Gaussian model or equivalently a problem in two-dimensional electrostatics. We show that fitting the order parameter profile to the theoretical form gives an accurate route to the determination of eta. We perform numerical simulations for the Ising model and percolation for comparison with these analytic predictions, and apply this approach to the study of the planar rotor model.
引用
收藏
页码:14425 / 14433
页数:9
相关论文
共 50 条
  • [31] Orientational order and topological defects in two-dimensional Yukawa systems
    Vaulina, O. S.
    Vasilieva, E. V.
    PHYSICS LETTERS A, 2014, 378 (09) : 719 - 722
  • [32] Critical point of jamming transition in two-dimensional monodisperse systems
    Liping Deng
    Cai Zhao
    Zhenhuan Xu
    Wen Zheng
    The European Physical Journal E, 2020, 43
  • [33] Duck traps: two-dimensional critical manifolds in planar systems
    Kuehn, Christian
    Muench, Christian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (04): : 584 - 612
  • [34] CRITICAL CURRENTS AND ELECTRIC-FIELDS OF TWO-DIMENSIONAL SYSTEMS
    BURKOV, SE
    POKROVSKY, VL
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1981, 44 (5-6) : 423 - 439
  • [35] Exploring multifractal critical phases in two-dimensional quasiperiodic systems
    Yang, Chao
    Yang, Weizhe
    Wang, Yongjian
    Wang, Yucheng
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [36] Critical point of jamming transition in two-dimensional monodisperse systems
    Deng, Liping
    Zhao, Cai
    Xu, Zhenhuan
    Zheng, Wen
    EUROPEAN PHYSICAL JOURNAL E, 2020, 43 (12):
  • [37] CRITICAL ELECTRIC-FIELDS AND CURRENTS OF TWO-DIMENSIONAL SYSTEMS
    BURKOV, SE
    POKROVSKII, VL
    JETP LETTERS, 1980, 32 (04) : 263 - 267
  • [38] Entanglement scaling in critical two-dimensional fermionic and bosonic systems
    Barthel, T.
    Chung, M. -C.
    Schollwoeck, U.
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [39] Critical behavior of two-dimensional fully frustrated XY systems
    Hasenbusch, Martin
    Pelissetto, Andrea
    Vicari, Ettore
    INTERNATIONAL WORKSHOP ON STATISTICAL MECHANICS AND COMBINATORICS: COUNTING COMPLEXITY, 2006, 42 : 124 - +
  • [40] Critical spectral statistics in two-dimensional interacting disordered systems
    Cuevas, E
    PHYSICAL REVIEW LETTERS, 1999, 83 (01) : 140 - 143