Generalized hypergeometric Bernoulli numbers

被引:4
|
作者
Chakraborty, Kalyan [1 ,2 ]
Komatsu, Takao [3 ]
机构
[1] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
[2] Kerala Sch Math, Kozhikode 673571, Kerala, India
[3] Zhejiang Sci Tech Univ, Sch Sci, Dept Math Sci, Hangzhou 310018, Peoples R China
关键词
Bernoulli numbers; Hypergeometric Bernoulli numbers; Hypergeometric functions; Dirichlet characters;
D O I
10.1007/s13398-021-01042-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce generalized hypergeometric Bernoulli numbers for Dirichlet characters. We study their properties, including relations, expressions and determinants. At the end in Appendix we derive first few expressions of these numbers.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A SIMPLE EXPLICIT FORMULA FOR THE GENERALIZED BERNOULLI NUMBERS
    TODOROV, PG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (13): : 665 - 666
  • [32] NOTE ON CERTAIN CONGRUENCES FOR GENERALIZED BERNOULLI NUMBERS
    METSANKYLA, T
    ARCHIV DER MATHEMATIK, 1978, 30 (06) : 595 - 598
  • [33] Values of a Class of Generalized Euler and Bernoulli Numbers
    Yang, Jin-Hua
    Zhao, Feng-Zhen
    ARS COMBINATORIA, 2011, 98 : 25 - 32
  • [34] On some new congruences for generalized Bernoulli numbers
    Kanemitsu, Shigeru
    Urbanowicz, Jerzy
    Wang, Nianliang
    ACTA ARITHMETICA, 2012, 155 (03) : 247 - 258
  • [35] LEHMER'S GENERALIZED EULER NUMBERS IN HYPERGEOMETRIC FUNCTIONS
    Barman, Rupam
    Komatsu, Takao
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 485 - 505
  • [36] GENERALIZED BERNOULLI NUMBERS AND M-REGULAR PRIMES
    HAO, FH
    PARRY, CJ
    MATHEMATICS OF COMPUTATION, 1984, 43 (167) : 273 - 288
  • [37] On Generalized q-Poly-Bernoulli Numbers and Polynomials
    Bilgic, Secil
    Kurt, Veli
    FILOMAT, 2020, 34 (02) : 515 - 520
  • [38] SOME RESULTS FOR GENERALIZED BERNOULLI, EULER, STIRLING NUMBERS
    TOSCANO, L
    FIBONACCI QUARTERLY, 1978, 16 (02): : 103 - 112
  • [39] A new identity for cosine function and generalized Bernoulli numbers
    Mittou, Brahim
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [40] CONVOLUTIONS OF GENERALIZED STIRLING NUMBERS AND DEGENERATE BERNOULLI POLYNOMIALS
    Komatsu, Takao
    Young, Paul Thomas
    FIBONACCI QUARTERLY, 2020, 58 (04): : 361 - 366