A new identity for cosine function and generalized Bernoulli numbers

被引:0
|
作者
Mittou, Brahim [1 ,2 ]
机构
[1] Univ Kasdi Merbah, Dept Math, Ouargla 30000, Algeria
[2] ENS Kouba, EDPNL & HM Lab, Algiers 16050, Algeria
关键词
Cosine sum; Generalized Bernoulli number; Character sum; Reduced residue classe; Dirichlet L-function;
D O I
10.1007/s13226-025-00761-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime number p >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 3$$\end{document} we let G(p)=x<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(p)=\left\langle \overline{x}\right\rangle $$\end{document} denote the group of reduced residue classes modulo p and we let G<^>(p)=chi 0,chi 1,& mldr;,chi p-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{G}(p)=\left\{ \chi _{0},\chi _{1},\ldots ,\chi _{p-2}\right\} $$\end{document} denote the group of Dirichlet characters modulo p. Let l and nu l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _l$$\end{document} be integers such that gcd(p,l)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (p,l)=1$$\end{document} and l<overline>=x<overline>nu l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{l}=\overline{x}<^>{\nu _l}$$\end{document}. The main purpose of this paper is to present an explicit formula for the sum: & sum;a=0p-2|B1(chi a)|2cos2 pi a nu lp-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{a=0}<^>{p-2}|B_1(\chi _a)|<^>2\cos \left( \dfrac{2\pi a\nu _l}{p-1}\right) , \end{aligned}$$\end{document}where Bm(chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_m(\chi )$$\end{document}(m >= 0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m\ge 0)$$\end{document} are the generalized Bernoulli numbers associated with chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}.
引用
收藏
页数:5
相关论文
共 50 条