Generalized hypergeometric Bernoulli numbers

被引:4
|
作者
Chakraborty, Kalyan [1 ,2 ]
Komatsu, Takao [3 ]
机构
[1] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
[2] Kerala Sch Math, Kozhikode 673571, Kerala, India
[3] Zhejiang Sci Tech Univ, Sch Sci, Dept Math Sci, Hangzhou 310018, Peoples R China
关键词
Bernoulli numbers; Hypergeometric Bernoulli numbers; Hypergeometric functions; Dirichlet characters;
D O I
10.1007/s13398-021-01042-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce generalized hypergeometric Bernoulli numbers for Dirichlet characters. We study their properties, including relations, expressions and determinants. At the end in Appendix we derive first few expressions of these numbers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Generalized hypergeometric Bernoulli numbers
    Kalyan Chakraborty
    Takao Komatsu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [2] On hypergeometric Bernoulli numbers and polynomials
    Hu, S.
    Kim, M. -S.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 134 - 146
  • [3] On hypergeometric Bernoulli numbers and polynomials
    S. Hu
    M.-S. Kim
    Acta Mathematica Hungarica, 2018, 154 : 134 - 146
  • [4] Arithmetical properties of hypergeometric Bernoulli numbers
    Berhanu, Daniel
    Legesse, Hunduma
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (01): : 84 - 90
  • [5] Sums of products of hypergeometric Bernoulli numbers
    Kamano, Ken
    JOURNAL OF NUMBER THEORY, 2010, 130 (10) : 2259 - 2271
  • [6] Several properties of hypergeometric Bernoulli numbers
    Aoki, Miho
    Komatsu, Takao
    Panda, Gopal Krishna
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [7] Hypergeometric degenerate Bernoulli polynomials and numbers
    Komatsu, Takao
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (01) : 163 - 177
  • [8] Bernoulli numbers and confluent hypergeometric functions
    Dilcher, K
    NUMBER THEORY FOR THE MILLENNIUM I, 2002, : 343 - 363
  • [9] Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyunseok Lee
    Hanyoung Kim
    Advances in Difference Equations, 2021
  • [10] Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Hanyoung
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)