Determination of rock depth using artificial intelligence techniques

被引:20
|
作者
Viswanathan, R. [1 ]
Samui, Pijush [2 ]
机构
[1] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India
[2] VIT Univ, Ctr Disaster Mitigat & Management, Vellore 632014, Tamil Nadu, India
关键词
Rock depth; Spatial variability; Least square support vector machine; Gaussian process regression; Extreme learning machine;
D O I
10.1016/j.gsf.2015.04.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR), Least Square Support Vector Machine (LSSVM) and Extreme Learning Machine (ELM), for prediction of rock depth (d) at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce spatial variability of rock depth and offer robust models for the prediction of rock depth. (C) 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [31] Semantic Malware Classification Using Artificial Intelligence Techniques
    Martins, Eliel
    Higuera, Javier Bermejo
    Sant'Ana, Ricardo
    Higuera, Juan Ramon Bermejo
    Montalvo, Juan Antonio Sicilia
    Castillo, Diego Piedrahita
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (03): : 3031 - 3067
  • [32] Rockburst prediction using artificial intelligence techniques:A review
    Yu Zhang
    Kongyi Fang
    Manchao He
    Dongqiao Liu
    Junchao Wang
    Zhengjia Guo
    Rock Mechanics Bulletin, 2024, 3 (03) : 1 - 13
  • [33] Using artificial intelligence techniques in an environmental GEO DSS
    Mogorovich, P
    Simi, M
    Rizzuti, EL
    Sperduti, C
    GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 423 - 431
  • [34] Optimization of machining parameters using artificial Intelligence techniques
    Muthuram, N.
    Frank, F. Christo
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 8097 - 8102
  • [35] Implicit Material Modelling Using Artificial Intelligence techniques
    Gaspar, M.
    Andrade-Campos, A.
    PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2019), 2019, 2113
  • [36] Intelligent manufacturing - The excuse for using artificial intelligence techniques?
    Benic, D
    CIM '97 - COMPUTER INTEGRATED MANUFACTURING AND HIGH SPEED MACHINING, 1997, : E1 - E12
  • [37] Facial landmark detection using artificial intelligence techniques
    Zhongshan, Chen
    Xinning, Feng
    Manickam, Adhiyaman
    Sathishkumar, V. E.
    ANNALS OF OPERATIONS RESEARCH, 2023, 326 (SUPPL 1) : 63 - 63
  • [38] Classification of bidimensional images using artificial intelligence techniques
    Perelmuter, G
    Pereira, PCA
    Vellasco, M
    Pacheco, MA
    Carrera, EV
    II WORKSHOP ON CYBERNETIC VISION, PROCEEDINGS, 1997, : 39 - 44
  • [39] TECHNIQUES OF ARTIFICIAL INTELLIGENCE FOR THE DETERMINATION OF THE OPTIMAL INVERSION TIME: THE THAITI PROJECT
    Torlasco, Camilla
    Papetti, Daniele M.
    Sabatini, Maria
    Muscogiuri, Giuseppe
    Castelletti, Silvia
    Xue, Hui
    Kellman, Peter
    Parati, Gianfranco
    Badano, Luigi P.
    Nobile, Marco S.
    Besozzi, Daniela
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2022, 24
  • [40] Exploiting Image Processing and Artificial Intelligence Techniques for the Determination of Antimicrobial Susceptibility
    Gullu, Emrah
    Bora, Sebnem
    Beynek, Burak
    APPLIED SCIENCES-BASEL, 2024, 14 (09):