Determination of rock depth using artificial intelligence techniques

被引:20
|
作者
Viswanathan, R. [1 ]
Samui, Pijush [2 ]
机构
[1] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India
[2] VIT Univ, Ctr Disaster Mitigat & Management, Vellore 632014, Tamil Nadu, India
关键词
Rock depth; Spatial variability; Least square support vector machine; Gaussian process regression; Extreme learning machine;
D O I
10.1016/j.gsf.2015.04.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR), Least Square Support Vector Machine (LSSVM) and Extreme Learning Machine (ELM), for prediction of rock depth (d) at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce spatial variability of rock depth and offer robust models for the prediction of rock depth. (C) 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [21] Prediction of Elimination of Compounds Using Artificial Intelligence Techniques
    Sharma, Anju
    Kumar, Rajnish
    2018 INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND SYSTEMS BIOLOGY (BSB), 2018, : 123 - 127
  • [22] Distributed Generator Placement Techniques Using Artificial Intelligence
    Aghaebrahimi, M. R.
    Amiri, M.
    2009 INTERNATIONAL CONFERENCE ON SUSTAINABLE POWER GENERATION AND SUPPLY, VOLS 1-4, 2009, : 698 - 703
  • [23] Slope stability analysis using artificial intelligence techniques
    Suman, Shakti
    Khan, S. Z.
    Das, S. K.
    Chand, S. K.
    NATURAL HAZARDS, 2016, 84 (02) : 727 - 748
  • [24] Pharmaceutical routes optimization using artificial intelligence techniques
    Curcio, Duilio
    Longo, Francesco
    Mirabelli, Giovanni
    Papoff, Enrico
    IDAACS 2007: PROCEEDINGS OF THE 4TH IEEE WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2007, : 238 - 242
  • [25] CARTOGRAPHIC GENERALIZATION OF LINES USING ARTIFICIAL INTELLIGENCE TECHNIQUES
    Travanca Lopes, Jose
    Catalao, Joao
    ATAS DAS I JORNADAS LUSOFONAS DE CIENCIAS E TECNOLOGIAS DE INFORMACAO GEOGRAFICA, 2015, : 669 - 682
  • [26] Substance use prediction using artificial intelligence techniques
    Unlu, Ali
    Subasi, Abdulhamit
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2025, 8 (01):
  • [27] Malware Detection and Prevention using Artificial Intelligence Techniques
    Faruk, Md Jobair Hossain
    Shahriar, Hossain
    Valero, Maria
    Barsha, Farhat Lamia
    Sobhan, Shahriar
    Khan, Md Abdullah
    Whitman, Michael
    Cuzzocrea, Alfredo
    Lo, Dan
    Rahman, Akond
    Wu, Fan
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5369 - 5377
  • [28] Predicting Platelet Age Using Artificial Intelligence Techniques
    Slotman, Johan
    Swinkels, Maurice
    Burgisser, Petra E.
    Bestebroer, Joyce
    Klei, Thomas R. L.
    Houtsmuller, Adriaan B.
    Leebeek, Frank W. G.
    Bierings, Ruben
    Jansen, A. J. Gerard
    BLOOD, 2022, 140 : 2656 - 2657
  • [29] Slope stability analysis using artificial intelligence techniques
    Shakti Suman
    S. Z. Khan
    S. K. Das
    S. K. Chand
    Natural Hazards, 2016, 84 : 727 - 748
  • [30] Rockburst prediction using artificial intelligence techniques: A review
    Zhang, Yu
    Fang, Kongyi
    He, Manchao
    Liu, Dongqiao
    Wang, Junchao
    Guo, Zhengjia
    ROCK MECHANICS BULLETIN, 2024, 3 (03):