Determination of rock depth using artificial intelligence techniques

被引:20
|
作者
Viswanathan, R. [1 ]
Samui, Pijush [2 ]
机构
[1] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India
[2] VIT Univ, Ctr Disaster Mitigat & Management, Vellore 632014, Tamil Nadu, India
关键词
Rock depth; Spatial variability; Least square support vector machine; Gaussian process regression; Extreme learning machine;
D O I
10.1016/j.gsf.2015.04.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR), Least Square Support Vector Machine (LSSVM) and Extreme Learning Machine (ELM), for prediction of rock depth (d) at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce spatial variability of rock depth and offer robust models for the prediction of rock depth. (C) 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [1] Determination of rock depth using artificial intelligence techniques
    RViswanathan
    Pijush Samui
    Geoscience Frontiers, 2016, (01) : 61 - 66
  • [2] Determination of rock depth using artificial intelligence techniques
    R.Viswanathan
    Pijush Samui
    Geoscience Frontiers, 2016, 7 (01) : 61 - 66
  • [3] Rock Mass Classification by Multivariate Statistical Techniques and Artificial Intelligence
    Allan Erlikhman Medeiros Santos
    Milene Sabino Lana
    Tiago Martins Pereira
    Geotechnical and Geological Engineering, 2021, 39 : 2409 - 2430
  • [4] Rock Mass Classification by Multivariate Statistical Techniques and Artificial Intelligence
    Santos, Allan Erlikhman Medeiros
    Lana, Milene Sabino
    Pereira, Tiago Martins
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2021, 39 (03) : 2409 - 2430
  • [5] Using Artificial Intelligence to Build With Unprocessed Rock
    Lambert, Malcolm
    Kennedy, Paul
    NOVEL AND NON-CONVENTIONAL MATERIALS AND TECHNOLOGIES FOR SUSTAINABILITY, 2012, 517 : 939 - +
  • [6] New insights into porosity determination using artificial intelligence techniques for carbonate reservoirs
    Salaheldin Elkatatny
    Zeeshan Tariq
    Mohamed Mahmoud
    Abdulazeez Abdulraheem
    Petroleum, 2018, 4 (04) : 408 - 418
  • [7] Level Determination of Space Orientation Depending on Manual Laterality and Using Artificial Intelligence Techniques
    Badau, Dana
    Badau, Adela
    Paraschiv, Florin
    Marian, Manolache Gabriel
    Laurentiu-Gabriel, Talaghir
    Nicolae, Neagu
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING AND DATA BASES, 2010, : 108 - +
  • [8] Artificial intelligence techniques
    Whalen, JP
    CLINICAL IMAGING, 1997, 21 (06) : 389 - 389
  • [9] Application of Artificial Intelligence Techniques for the Determination of Groundwater Level Using Spatio-Temporal Parameters
    Najafabadipour, Amirhossein
    Kamali, Gholamreza
    Nezamabadi-pour, Hossein
    ACS OMEGA, 2022, 7 (12): : 10751 - 10764
  • [10] Determination of the shear failure areas of rock joints using a laser scanning technique and artificial intelligence algorithms
    Ge, Yunfeng
    Xie, Zhiguo
    Tang, Huiming
    Du, Bin
    Cao, Bei
    ENGINEERING GEOLOGY, 2021, 293