Impact of additive covariate error on linear model

被引:0
|
作者
Nakashima, Eiji [1 ]
机构
[1] Res Inst Radiat Epidemiol & Biostat, Fuchu Cho Osu 1-6-28-505, Hiroshima 7350021, Japan
关键词
Additive measurement error; GLMs; identity-link; LNT model; regression calibration; ATOMIC-BOMB SURVIVORS; CANCER-MORTALITY;
D O I
10.1080/03610926.2018.1515361
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider effect of additive covariate error on linear model in observational (radiation epidemiology) study for exposure risk. Additive dose error affects dose-response shape under general linear regression settings covering identity-link GLM type models and linear excess-relative-risk grouped-Poisson models. Under independent error, dose distribution that log of dose density is up to quadratic polynomial on an interval (the log-quadratic density condition), normal, exponential, and uniform distributions, is the condition for linear regression calibration. Violation of the condition can result low-dose-high-sensitivity model from linear no-threshold (LNT) model by the dose error. Power density is also considered. A published example is given.
引用
收藏
页码:5517 / 5529
页数:13
相关论文
共 50 条
  • [41] The impact of misspecification of residual error or correlation structure on the type I error rate for covariate inclusion
    Hanna E. Silber
    Maria C. Kjellsson
    Mats O. Karlsson
    Journal of Pharmacokinetics and Pharmacodynamics, 2009, 36 : 81 - 99
  • [42] Covariate Selection in High-Dimensional Generalized Linear Models With Measurement Error
    Sorensen, Oystein
    Hellton, Kristoffer Herland
    Frigessi, Arnoldo
    Thoresen, Magne
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 739 - 749
  • [43] Covariate Error Bias Effects in Dynamic Regression Model Estimation and Improvement in the Prediction by Covariate Local Clusters
    Mantovan, Pietro
    Pastore, Andrea
    DATA ANALYSIS AND CLASSIFICATION, 2010, : 281 - 288
  • [44] CORRECTION FOR COVARIATE MEASUREMENT ERROR IN GENERALIZED LINEAR-MODELS - A BOOTSTRAP APPROACH
    HAUKKA, JK
    BIOMETRICS, 1995, 51 (03) : 1127 - 1132
  • [45] Mixtures of Berkson and classical covariate measurement error in the linear mixed model: Bias analysis and application to a study on ultrafine particles
    Deffner, Veronika
    Kuechenhoff, Helmut
    Breitner, Susanne
    Schneider, Alexandra
    Cyrys, Josef
    Peters, Annette
    BIOMETRICAL JOURNAL, 2018, 60 (03) : 480 - 497
  • [46] On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model
    Das, Sthitadhi
    Maiti, Saran Ishika
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2022, 23 (02) : 541 - 564
  • [47] Estimating the parameters in the Cox model when covariate variables are measured with error
    Hu, P
    Tsiatis, AA
    Davidian, M
    BIOMETRICS, 1998, 54 (04) : 1407 - 1419
  • [48] Accounting for covariate measurement error in a Cox model analysis of recurrence of depression
    Liu, K
    Mazumdar, S
    Stone, RA
    Dew, MA
    Houck, PR
    Reynolds, CF
    JOURNAL OF PSYCHIATRIC RESEARCH, 2001, 35 (03) : 177 - 185
  • [49] On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model
    Sthitadhi Das
    Saran Ishika Maiti
    Journal of the Indian Society for Probability and Statistics, 2022, 23 : 541 - 564
  • [50] SIMEX estimation for single-index model with covariate measurement error
    Yang, Yiping
    Tong, Tiejun
    Li, Gaorong
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (01) : 137 - 161