Impact of additive covariate error on linear model

被引:0
|
作者
Nakashima, Eiji [1 ]
机构
[1] Res Inst Radiat Epidemiol & Biostat, Fuchu Cho Osu 1-6-28-505, Hiroshima 7350021, Japan
关键词
Additive measurement error; GLMs; identity-link; LNT model; regression calibration; ATOMIC-BOMB SURVIVORS; CANCER-MORTALITY;
D O I
10.1080/03610926.2018.1515361
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider effect of additive covariate error on linear model in observational (radiation epidemiology) study for exposure risk. Additive dose error affects dose-response shape under general linear regression settings covering identity-link GLM type models and linear excess-relative-risk grouped-Poisson models. Under independent error, dose distribution that log of dose density is up to quadratic polynomial on an interval (the log-quadratic density condition), normal, exponential, and uniform distributions, is the condition for linear regression calibration. Violation of the condition can result low-dose-high-sensitivity model from linear no-threshold (LNT) model by the dose error. Power density is also considered. A published example is given.
引用
收藏
页码:5517 / 5529
页数:13
相关论文
共 50 条
  • [31] An approximate method for generalized linear and nonlinear mixed effects models with a mechanistic nonlinear covariate measurement error model
    Hongbin Zhang
    Lang Wu
    Metrika, 2019, 82 : 471 - 499
  • [32] An approximate method for generalized linear and nonlinear mixed effects models with a mechanistic nonlinear covariate measurement error model
    Zhang, Hongbin
    Wu, Lang
    METRIKA, 2019, 82 (04) : 471 - 499
  • [33] The impact of covariate misclassification using generalized linear regression under covariate-adaptive randomization
    Fan, Liqiong
    Yeatts, Sharon D.
    Wolf, Bethany J.
    McClure, Leslie A.
    Selim, Magdy
    Palesch, Yuko Y.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (01) : 20 - 34
  • [34] Simultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model
    Maleki, M. R.
    Amiri, A.
    Ghashghaei, R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2016, 29 (04): : 514 - 523
  • [35] Nonparametric correction for covariate measurement error in a stratified Cox model
    Gorfine, M
    Hsu, L
    Prentice, RL
    BIOSTATISTICS, 2004, 5 (01) : 75 - 87
  • [36] Proportional Hazards Model With Covariate Measurement Error and Instrumental Variables
    Song, Xiao
    Wang, Ching-Yun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1636 - 1646
  • [37] ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL WITH COVARIATE MEASUREMENT ERROR
    Martin-Magniette, Marie-Laure
    Taupin, Marie-Luce
    ESAIM-PROBABILITY AND STATISTICS, 2009, 13 : 87 - 114
  • [38] Linear mixed models for replication data to efficiently allow for covariate measurement error
    Bartlett, Jonathan W.
    De Stavola, Bianca L.
    Frost, Chris
    STATISTICS IN MEDICINE, 2009, 28 (25) : 3158 - 3178
  • [39] The impact of misspecification of residual error or correlation structure on the type I error rate for covariate inclusion
    Silber, Hanna E.
    Kjellsson, Maria C.
    Karlsson, Mats O.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2009, 36 (01) : 81 - 99
  • [40] Generalized Linear Models with Covariate Measurement Error and Zero-Inflated Surrogates
    Wang, Ching-Yun
    Tapsoba, Jean de Dieu
    Duggan, Catherine
    Mctiernan, Anne
    MATHEMATICS, 2024, 12 (02)