Interactive Machine Learning Tool for Clustering in Visual Analytics

被引:7
|
作者
Thrun, Michael [1 ]
Pape, Felix [2 ]
Ultsch, Alfred [1 ]
机构
[1] Philipps Univ Marburg, Databion Res Grp, D-35032 Marburg, Germany
[2] Philipps Univ Marburg, D-35032 Marburg, Germany
关键词
cluster analysis; interactive machine learning; visual analytics; structures;
D O I
10.1109/DSAA49011.2020.00062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is an important task in knowledge discovery with the goal of finding groups of similar data points in a dataset. Today there are many different approaches to clustering, including methods to incorporate user decisions into the clustering process. Some of these interactive approaches fall into the category of visual analytics and emphasize the power of visualizations to help find clusters manually in various types of datasets or to verify the results of clustering algorithms. The interactive projection-based clustering (IPBC) is an open-source and parameter-free method using user input on interactive visualizations to cluster high-dimensional data. This work introduces the IPBC approach and compares it to the results of accessible visual analytics approaches for clustering, showing that IPBC can outperform them.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
  • [1] explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning
    Spinner, Thilo
    Schlegel, Udo
    Schaefer, Hanna
    El-Assady, Mennatallah
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 1064 - 1074
  • [2] A Visual Analytics Approach for Interactive Document Clustering
    Sherkat, Ehsan
    Milios, Evangelos E.
    Minghim, Rosane
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2020, 10 (01)
  • [3] XAutoML: A Visual Analytics Tool for Understanding and Validating Automated Machine Learning
    Zoeller, Marc-Andre
    Titov, Waldemar
    Schlegel, Thomas
    Huber, Marco F.
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2023, 13 (04)
  • [4] Visual Analytics for Interactive Machine Learning A Modular Multi-View Approach
    Correll, Elena
    Eliseeva, Uliana
    Nazemi, Kawa
    2024 28TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION, IV 2024, 2024, : 160 - 166
  • [5] Interactive Document Clustering Revisited: A Visual Analytics Approach
    Sherkat, Ehsan
    Nourashrafeddin, Seyednaser
    Milios, Evangelos E.
    Minghim, Rosane
    IUI 2018: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2018, : 281 - 292
  • [6] Hawkeye: an interactive visual analytics tool for genome assemblies
    Schatz, Michael C.
    Phillippy, Adam M.
    Shneiderman, Ben
    Salzberg, Steven L.
    GENOME BIOLOGY, 2007, 8 (03)
  • [7] Hawkeye: an interactive visual analytics tool for genome assemblies
    Michael C Schatz
    Adam M Phillippy
    Ben Shneiderman
    Steven L Salzberg
    Genome Biology, 8
  • [8] VINARCH: A Visual Analytics Interactive Tool for Neural Network Archaeology
    An, Seoyoung
    Channing, Georgia
    Schuman, Catherine
    Taufer, Michela
    2023 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING WORKSHOPS, CLUSTER WORKSHOPS, 2023, : 50 - 51
  • [9] Interactive visual machine learning in spreadsheets
    Sarkar, Advait
    Jamnik, Mateja
    Blackwell, Alan F.
    Spott, Martin
    PROCEEDINGS 2015 IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING (VL/HCC), 2015, : 159 - 163
  • [10] A survey of visual analytics techniques for machine learning
    Jun Yuan
    Changjian Chen
    Weikai Yang
    Mengchen Liu
    Jiazhi Xia
    Shixia Liu
    Computational Visual Media, 2021, 7 : 3 - 36