Autoassociative-heteroassociative neural networks

被引:3
|
作者
Kropas-Hughes, CV
Oxley, ME
Rogers, SK
Kabrisky, M
机构
[1] USAF, Res Lab, Mat & Mfg Directorate, AFRL MLLP, Wright Patterson AFB, OH 45433 USA
[2] USAF, Inst Technol, Dept Math & Stat, Wright Patterson AFB, OH 45433 USA
[3] Qualia Comp Inc, Beavercreek, OH 45431 USA
[4] USAF, Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA
基金
美国国家卫生研究院;
关键词
neural networks; autoassociative neural networks; stability;
D O I
10.1016/S0952-1976(00)00040-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Autoassociative-Heteroassociative Neural Network (A-HNN) is a unique integration of autoassociative and heteroassociative neural network mappings to provide a functional approximation of two variables from one. This new architecture provides three features: the autoassociative mapping enables a stability metric for assessing the robustness or accuracy of the heteroassociative mapping; the A-HNN generates the inverse of the encoding portion of an associated autoassociative neural network (AANN); and, empirically, the use of input data as target vectors (the autoassociative mapping) improves training performance of the network. Published by Elsevier Science Ltd.
引用
收藏
页码:603 / 609
页数:7
相关论文
共 50 条