Autoassociative-heteroassociative neural networks

被引:3
|
作者
Kropas-Hughes, CV
Oxley, ME
Rogers, SK
Kabrisky, M
机构
[1] USAF, Res Lab, Mat & Mfg Directorate, AFRL MLLP, Wright Patterson AFB, OH 45433 USA
[2] USAF, Inst Technol, Dept Math & Stat, Wright Patterson AFB, OH 45433 USA
[3] Qualia Comp Inc, Beavercreek, OH 45431 USA
[4] USAF, Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA
基金
美国国家卫生研究院;
关键词
neural networks; autoassociative neural networks; stability;
D O I
10.1016/S0952-1976(00)00040-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Autoassociative-Heteroassociative Neural Network (A-HNN) is a unique integration of autoassociative and heteroassociative neural network mappings to provide a functional approximation of two variables from one. This new architecture provides three features: the autoassociative mapping enables a stability metric for assessing the robustness or accuracy of the heteroassociative mapping; the A-HNN generates the inverse of the encoding portion of an associated autoassociative neural network (AANN); and, empirically, the use of input data as target vectors (the autoassociative mapping) improves training performance of the network. Published by Elsevier Science Ltd.
引用
收藏
页码:603 / 609
页数:7
相关论文
共 50 条
  • [21] Line spectrum extraction based on autoassociative neural networks
    Huang, Chunlong
    Yang, Kunde
    Yang, Qiulong
    Zhang, Hao
    JASA EXPRESS LETTERS, 2021, 1 (01):
  • [22] Film segmentation and indexing using autoassociative neural networks
    Rao, K.
    Nandi, Dipanjan
    Koolagudi, Shashidhar
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2014, 17 (01) : 65 - 74
  • [23] Deterministic SR phenomena in autoassociative chaotic neural networks
    Nishimura, H
    Katada, N
    Aihara, K
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 585 - 589
  • [24] Backpropagation of an Image Similarity Metric for Autoassociative Neural Networks
    C. V. Kropas-Hughes
    S. K. Rogers
    M. E. Oxley
    M. Kabrisky
    Pattern Analysis & Applications, 2000, 3 : 31 - 38
  • [25] AUTOASSOCIATIVE NEURAL NETWORKS FOR FEATURES REDUCTION OF HYPERSPECTRAL DATA
    Del Frate, F.
    Licciardi, G.
    Duca, R.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 62 - +
  • [26] Handwritten numeral recognition using autoassociative neural networks
    Kimura, F
    Inoue, S
    Wakabayashi, T
    Tsuruoka, S
    Miyake, Y
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 166 - 171
  • [27] Voice Pathology Distinction Using Autoassociative Neural Networks
    Hemmerling, Daria
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1844 - 1847
  • [28] Autoassociative neural networks for robust dynamic data reconciliation
    Bai, Shuanghua
    McLean, David D.
    Thibault, Jules
    AICHE JOURNAL, 2007, 53 (02) : 438 - 448
  • [29] Backpropagation of an image similarity metric for Autoassociative Neural Networks
    Kropas-Hughes, CV
    Rogers, SK
    Oxley, ME
    Kabrisky, M
    PATTERN ANALYSIS AND APPLICATIONS, 2000, 3 (01) : 31 - 38
  • [30] Spoken keyword detection using autoassociative neural networks
    Jothilakshmi S.
    International Journal of Speech Technology, 2014, 17 (1) : 83 - 89