A Modification of the Fast Inverse Square Root Algorithm

被引:6
|
作者
Walczyk, Cezary J. [1 ]
Moroz, Leonid, V [2 ]
Cieslinski, Jan L. [1 ]
机构
[1] Uniwersytet Bialymstoku, Wydzial Fizyki, Ul Ciolkowskiego 1L, PL-15245 Bialystok, Poland
[2] Lviv Polytech Natl Univ, Dept Secur Informat & Technol, St Kn Romana 1-3, UA-79000 Lvov, Ukraine
关键词
floating-point arithmetic; inverse square root; magic constant; Newton-Raphson method; DIVISION; UNIT;
D O I
10.3390/computation7030041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new algorithm for the approximate evaluation of the inverse square root for single-precision floating-point numbers. This is a modification of the famous fast inverse square root code. We use the same "magic constant" to compute the seed solution, but then, we apply Newton-Raphson corrections with modified coefficients. As compared to the original fast inverse square root code, the new algorithm is two-times more accurate in the case of one Newton-Raphson correction and almost seven-times more accurate in the case of two corrections. We discuss relative errors within our analytical approach and perform numerical tests of our algorithm for all numbers of the type float.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A one parameter method for the matrix inverse square root
    Lakić S.
    Applications of Mathematics, 1997, 42 (6) : 401 - 410
  • [42] A SURVEY OF RECENT WORK ON THE SQUARE ROOT OF THE INVERSE DIFFERENT
    EREZ, B
    ASTERISQUE, 1991, (198) : 133 - 152
  • [43] Fast Incremental Square Root Information Smoothing
    Kaess, Michael
    Ranganathan, Ananth
    Dellaert, Frank
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2129 - 2134
  • [44] Fast VLSI algorithms for division and square root
    McQuillan, S.E.
    McCanny, J.V.
    Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 1994, 8 (02): : 151 - 168
  • [45] A one parameter method for the matrix inverse square root
    University of Novi Sad, Technical Faculty Mihajlo Pupin, 23000 Zrenjanin
    Applic and Math, 6 (401-410):
  • [46] A fast square-root implementation for BLAST
    Hassibi, B
    CONFERENCE RECORD OF THE THIRTY-FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2000, : 1255 - 1259
  • [47] FAST TRIANGULAR FORMULATION OF SQUARE ROOT FILTER
    CARLSON, NA
    AIAA JOURNAL, 1973, 11 (09) : 1259 - 1265
  • [48] An Improved Square-Root Algorithm for V-BLAST Based on Efficient Inverse Cholesky Factorization
    Zhu, Hufei
    Chen, Wen
    Li, Bin
    Gao, Feifei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2011, 10 (01) : 43 - 48
  • [49] A fast algorithm for group square-root Lasso based group-sparse regression
    Zhao, Chunlei
    Mao, Xingpeng
    Chen, Minqiu
    Yu, Changjun
    SIGNAL PROCESSING, 2021, 187
  • [50] Fast root MUSIC algorithm
    Ren, QS
    Willis, AJ
    ELECTRONICS LETTERS, 1997, 33 (06) : 450 - 451