A Modification of the Fast Inverse Square Root Algorithm

被引:6
|
作者
Walczyk, Cezary J. [1 ]
Moroz, Leonid, V [2 ]
Cieslinski, Jan L. [1 ]
机构
[1] Uniwersytet Bialymstoku, Wydzial Fizyki, Ul Ciolkowskiego 1L, PL-15245 Bialystok, Poland
[2] Lviv Polytech Natl Univ, Dept Secur Informat & Technol, St Kn Romana 1-3, UA-79000 Lvov, Ukraine
关键词
floating-point arithmetic; inverse square root; magic constant; Newton-Raphson method; DIVISION; UNIT;
D O I
10.3390/computation7030041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new algorithm for the approximate evaluation of the inverse square root for single-precision floating-point numbers. This is a modification of the famous fast inverse square root code. We use the same "magic constant" to compute the seed solution, but then, we apply Newton-Raphson corrections with modified coefficients. As compared to the original fast inverse square root code, the new algorithm is two-times more accurate in the case of one Newton-Raphson correction and almost seven-times more accurate in the case of two corrections. We discuss relative errors within our analytical approach and perform numerical tests of our algorithm for all numbers of the type float.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Fast Square-Root Detection Algorithm for V-BLAST
    Wang, Yun
    Wang, Jinkuan
    2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 1340 - 1343
  • [22] A fast integer square root
    Heinrich, P
    DR DOBBS JOURNAL, 1996, 21 (04): : 113 - &
  • [23] FAST SQUARE ROOT CONVERSION
    BRINDEL, FD
    INSTRUMENTATION TECHNOLOGY, 1968, 15 (12): : 62 - &
  • [24] ON THE COMPUTATION OF A MATRIX INVERSE SQUARE ROOT
    SHERIF, N
    COMPUTING, 1991, 46 (04) : 295 - 305
  • [25] Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton-Raphson Corrections
    Walczyk, Cezary J.
    Moroz, Leonid V.
    Cieslinski, Jan L.
    ENTROPY, 2021, 23 (01) : 1 - 21
  • [26] AN ONLINE SQUARE ROOT ALGORITHM
    OKLOBDZIJA, VG
    ERCEGOVAC, MD
    IEEE TRANSACTIONS ON COMPUTERS, 1982, 31 (01) : 70 - 75
  • [27] Fast floating point square root
    Hain, TF
    Mercer, DB
    AMCS '05: Proceedings of the 2005 International Conference on Algorithmic Mathematics and Computer Science, 2005, : 33 - 39
  • [28] THE GALOIS STRUCTURE OF THE SQUARE ROOT OF THE INVERSE DIFFERENT
    EREZ, B
    MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (02) : 239 - 255
  • [29] Pseudo-Normalization via Integer Fast Inverse Square Root and Its Application to Fast Computation without Division
    Kusaka, Takashi
    Tanaka, Takayuki
    ELECTRONICS, 2024, 13 (15)
  • [30] ALGORITHM FOR INVERSE SQUARE-ROOTS.
    Modi, J.J.
    Rollett, J.S.
    Cambridge University, Engineering Department, (Technical Report) CUED/F-CAMS, 1984,