Analysis and time-delay synchronisation of chaotic satellite systems

被引:8
|
作者
Khan, Ayub [1 ,2 ]
Kumar, Sanjay [1 ,2 ]
机构
[1] Dept Math, Fac Nat Sci, Jamia Millia Islamia, New Delhi, India
[2] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 91卷 / 04期
关键词
Lyapunov exponents; bifurcation diagram; Poincare section map and satellite systems; OBSERVER-BASED APPROACH;
D O I
10.1007/s12043-018-1610-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we analyse the chaotic satellite system using dissipativity, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan-Yorke dimension. We obtain the equilibrium points of chaotic satellite system and at each equilibrium point, we obtain the eigenvalue of Jacobian matrix of the satellite system to verify the unstable region. We calculate the Kaplan-Yorke dimension, which ensures the strange behaviour of the system. We observe closely the three-dimensional (3D) phase portraits of the satellite system at different parameter values. We plot the Lyapunov exponent graphs corresponding to every 3D phase portrait of satellite systems, to verify the chaoticity of satellite systems. We establish time-delay synchronisation for two identical satellite systems. The simulated and qualitative results are in an excellent agreement.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Global synchronization criteria with channel time-delay for chaotic time-delay system
    Sun, JT
    CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 967 - 975
  • [42] PROPER CHOICE OF THE TIME-DELAY FOR THE ANALYSIS OF CHAOTIC TIME-SERIES
    LIEBERT, W
    SCHUSTER, HG
    PHYSICS LETTERS A, 1989, 142 (2-3) : 107 - 111
  • [43] Robust control of time-delay chaotic
    Hua, CC
    Guan, XP
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 510 - 515
  • [44] Single chaotic neuron with time-delay
    Xie, L
    He, X
    Zhang, WD
    Xu, XM
    2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, : 809 - 812
  • [45] Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity
    Pai, Ming-Chang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 757 - 767
  • [46] Chaos synchronisation in high-order circuits and time-delay systems using observer
    Grassi, G
    Mascolo, S
    ELECTRONICS LETTERS, 1999, 35 (11) : 939 - 940
  • [47] CONTROLLING CHAOTIC DYNAMIC-SYSTEMS USING TIME-DELAY COORDINATES
    NITSCHE, G
    DRESSLER, U
    PHYSICA D, 1992, 58 (1-4): : 153 - 164
  • [48] Dissipative Control of Time-delay Chaotic Systems via DOBC Approach
    Gao, Yanbo
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 504 - 508
  • [49] Seeker optimization algorithm for parameter estimation of time-delay chaotic systems
    Dai, Chaohua
    Chen, Weirong
    Li, Lixiang
    Zhu, Yunfang
    Yang, Yixian
    PHYSICAL REVIEW E, 2011, 83 (03):
  • [50] Stabilization criterion for delayed feedback control of time-delay chaotic systems
    Zuo, Zhiqiang
    Wang, Yijing
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1462 - +