Analysis and time-delay synchronisation of chaotic satellite systems

被引:8
|
作者
Khan, Ayub [1 ,2 ]
Kumar, Sanjay [1 ,2 ]
机构
[1] Dept Math, Fac Nat Sci, Jamia Millia Islamia, New Delhi, India
[2] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 91卷 / 04期
关键词
Lyapunov exponents; bifurcation diagram; Poincare section map and satellite systems; OBSERVER-BASED APPROACH;
D O I
10.1007/s12043-018-1610-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we analyse the chaotic satellite system using dissipativity, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan-Yorke dimension. We obtain the equilibrium points of chaotic satellite system and at each equilibrium point, we obtain the eigenvalue of Jacobian matrix of the satellite system to verify the unstable region. We calculate the Kaplan-Yorke dimension, which ensures the strange behaviour of the system. We observe closely the three-dimensional (3D) phase portraits of the satellite system at different parameter values. We plot the Lyapunov exponent graphs corresponding to every 3D phase portrait of satellite systems, to verify the chaoticity of satellite systems. We establish time-delay synchronisation for two identical satellite systems. The simulated and qualitative results are in an excellent agreement.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Complete chaotic synchronization in mutually coupled time-delay systems
    Landsman, Alexandra S.
    Schwartz, Ira B.
    PHYSICAL REVIEW E, 2007, 75 (02):
  • [32] Robust control for a class of Nonlinear time-delay chaotic systems
    Ji, Guojun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 386 - 391
  • [33] Learning control of time-delay chaotic systems and its applications
    Konishi, K
    Kokame, H
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (12): : 2457 - 2465
  • [34] Adaptive Synchronization of Time-Delay Chaotic Systems with Intermittent Control
    Wang, Yuangan
    Li, Dong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (05) : 459 - 464
  • [35] Robust synchronization of chaotic systems with unmatched disturbance and time-delay
    Ma, Yuechao
    Jing, Yanhui
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (03) : 929 - 939
  • [36] Transmission of signals via synchronization of chaotic time-delay systems
    Pyragas, K
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (09): : 1839 - 1842
  • [37] Coexistence of anticipated and layered chaotic synchronization in time-delay systems
    Wang, HJ
    Huang, HB
    Qi, GX
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [38] Multiswitching dual combination synchronization of time-delay chaotic systems
    Khan, Ayub
    Budhraja, Mridula
    Ibraheem, Aysha
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) : 5679 - 5690
  • [39] New delay-dependent stabilization criterion for time-delay chaotic systems
    Wang, Yijing
    Zuo, Zhiqiang
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 5, PROCEEDINGS, 2007, : 34 - +
  • [40] SENSITIVITY ANALYSIS OF TIME-DELAY SYSTEMS
    KODA, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1981, 12 (11) : 1389 - 1397